Composition of $(E,2)$-summing operators
Studia Mathematica, Tome 159 (2003) no. 1, pp. 51-65
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Banach operator ideal of $(q,2)$-summing operators plays a fundamental role within the theory of $s$-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for $(E,2)$-summing operators, $E$ a symmetric Banach sequence space.
Keywords:
banach operator ideal summing operators plays fundamental role within theory s number eigenvalue distribution riesz operators banach spaces key result context composition formula operators due nig retherford tomczak jaegermann based abstract interpolation theory prove variant result summing operators symmetric banach sequence space
Affiliations des auteurs :
Andreas Defant 1 ; Mieczysław Mastyło 2
@article{10_4064_sm159_1_3,
author = {Andreas Defant and Mieczys{\l}aw Masty{\l}o},
title = {Composition of $(E,2)$-summing operators},
journal = {Studia Mathematica},
pages = {51--65},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2003},
doi = {10.4064/sm159-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-3/}
}
Andreas Defant; Mieczysław Mastyło. Composition of $(E,2)$-summing operators. Studia Mathematica, Tome 159 (2003) no. 1, pp. 51-65. doi: 10.4064/sm159-1-3
Cité par Sources :