An indecomposable and
unconditionally saturated Banach space
Studia Mathematica, Tome 159 (2003) no. 1, pp. 1-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct an indecomposable reflexive Banach space $X_{\rm ius}$ such that every infinite-dimensional closed subspace contains an unconditional basic sequence. We also show that every operator $T\in {\mathcal B}(X_{\rm ius})$ is of the form $\lambda I+S$ with $S$ a strictly singular operator.
Keywords:
construct indecomposable reflexive banach space ius every infinite dimensional closed subspace contains unconditional basic sequence every operator mathcal ius form lambda strictly singular operator
Affiliations des auteurs :
Spiros A. Argyros 1 ; Antonis Manoussakis 2
@article{10_4064_sm159_1_1,
author = {Spiros A. Argyros and Antonis Manoussakis},
title = {An indecomposable and
unconditionally saturated {Banach} space},
journal = {Studia Mathematica},
pages = {1--32},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2003},
doi = {10.4064/sm159-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-1/}
}
TY - JOUR AU - Spiros A. Argyros AU - Antonis Manoussakis TI - An indecomposable and unconditionally saturated Banach space JO - Studia Mathematica PY - 2003 SP - 1 EP - 32 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-1/ DO - 10.4064/sm159-1-1 LA - en ID - 10_4064_sm159_1_1 ER -
Spiros A. Argyros; Antonis Manoussakis. An indecomposable and unconditionally saturated Banach space. Studia Mathematica, Tome 159 (2003) no. 1, pp. 1-32. doi: 10.4064/sm159-1-1
Cité par Sources :