1Department of Mathematics National Technical University of Athens Athens, Greece 2Department of Sciences Section of Mathematics Technical University of Crete Chania, Crete, Greece
Studia Mathematica, Tome 159 (2003) no. 1, pp. 1-32
We construct an indecomposable reflexive Banach space $X_{\rm ius}$ such that every infinite-dimensional closed subspace contains an unconditional basic sequence. We also show that every operator $T\in {\mathcal B}(X_{\rm ius})$ is of the form $\lambda I+S$ with $S$ a strictly singular operator.
Keywords:
construct indecomposable reflexive banach space ius every infinite dimensional closed subspace contains unconditional basic sequence every operator mathcal ius form lambda strictly singular operator
Affiliations des auteurs :
Spiros A. Argyros 
1
;
Antonis Manoussakis 
2
1
Department of Mathematics National Technical University of Athens Athens, Greece
2
Department of Sciences Section of Mathematics Technical University of Crete Chania, Crete, Greece
@article{10_4064_sm159_1_1,
author = {Spiros A. Argyros and Antonis Manoussakis},
title = {An indecomposable and
unconditionally saturated {Banach} space},
journal = {Studia Mathematica},
pages = {1--32},
year = {2003},
volume = {159},
number = {1},
doi = {10.4064/sm159-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-1/}
}
TY - JOUR
AU - Spiros A. Argyros
AU - Antonis Manoussakis
TI - An indecomposable and
unconditionally saturated Banach space
JO - Studia Mathematica
PY - 2003
SP - 1
EP - 32
VL - 159
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-1/
DO - 10.4064/sm159-1-1
LA - en
ID - 10_4064_sm159_1_1
ER -
%0 Journal Article
%A Spiros A. Argyros
%A Antonis Manoussakis
%T An indecomposable and
unconditionally saturated Banach space
%J Studia Mathematica
%D 2003
%P 1-32
%V 159
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-1/
%R 10.4064/sm159-1-1
%G en
%F 10_4064_sm159_1_1
Spiros A. Argyros; Antonis Manoussakis. An indecomposable and
unconditionally saturated Banach space. Studia Mathematica, Tome 159 (2003) no. 1, pp. 1-32. doi: 10.4064/sm159-1-1