Lipschitz sums of convex functions
Studia Mathematica, Tome 158 (2003) no. 3, pp. 269-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of ${\mit \Delta }$-convex functions.
Keywords:
geometric characterization convex subsets banach space property convex continuous functions set their sum lipschitz functions lipschitz apply result theory mit delta convex functions
Affiliations des auteurs :
Marianna Csörnyei 1 ; Assaf Naor 2
@article{10_4064_sm158_3_6,
author = {Marianna Cs\"ornyei and Assaf Naor},
title = {Lipschitz sums of convex functions},
journal = {Studia Mathematica},
pages = {269--286},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2003},
doi = {10.4064/sm158-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-6/}
}
Marianna Csörnyei; Assaf Naor. Lipschitz sums of convex functions. Studia Mathematica, Tome 158 (2003) no. 3, pp. 269-286. doi: 10.4064/sm158-3-6
Cité par Sources :