1Department of Mathematics University College London Gower Street London, WC1E 6BT, United Kingdom 2Department of Mathematics Hebrew University, Givaat-Ram Jerusalem, Israel
Studia Mathematica, Tome 158 (2003) no. 3, pp. 269-286
We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of ${\mit \Delta }$-convex functions.
Keywords:
geometric characterization convex subsets banach space property convex continuous functions set their sum lipschitz functions lipschitz apply result theory mit delta convex functions
1
Department of Mathematics University College London Gower Street London, WC1E 6BT, United Kingdom
2
Department of Mathematics Hebrew University, Givaat-Ram Jerusalem, Israel
@article{10_4064_sm158_3_6,
author = {Marianna Cs\"ornyei and Assaf Naor},
title = {Lipschitz sums of convex functions},
journal = {Studia Mathematica},
pages = {269--286},
year = {2003},
volume = {158},
number = {3},
doi = {10.4064/sm158-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-6/}
}
TY - JOUR
AU - Marianna Csörnyei
AU - Assaf Naor
TI - Lipschitz sums of convex functions
JO - Studia Mathematica
PY - 2003
SP - 269
EP - 286
VL - 158
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-6/
DO - 10.4064/sm158-3-6
LA - en
ID - 10_4064_sm158_3_6
ER -