The density of states of a
local almost periodic operator in ${\Bbb R}^{\nu}$
Studia Mathematica, Tome 158 (2003) no. 3, pp. 227-237
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of the density of states of a local, self-adjoint operator determined by a coercive, almost periodic quadratic form on $H^m({{\mathbb R}}^{\nu })$. The support of the density coincides with the spectrum of the operator in $L^2({{\mathbb R}}^{\nu })$.
Keywords:
prove existence density states local self adjoint operator determined coercive almost periodic quadratic form mathbb support density coincides spectrum operator mathbb
Affiliations des auteurs :
Andrzej Krupa  1
@article{10_4064_sm158_3_4,
author = {Andrzej Krupa},
title = {The density of states of a
local almost periodic operator in ${\Bbb R}^{\nu}$},
journal = {Studia Mathematica},
pages = {227--237},
year = {2003},
volume = {158},
number = {3},
doi = {10.4064/sm158-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-4/}
}
Andrzej Krupa. The density of states of a
local almost periodic operator in ${\Bbb R}^{\nu}$. Studia Mathematica, Tome 158 (2003) no. 3, pp. 227-237. doi: 10.4064/sm158-3-4
Cité par Sources :