Ascent, descent and roots of Fredholm operators
Studia Mathematica, Tome 158 (2003) no. 3, pp. 219-226
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a Fredholm operator on a Banach space. Say $T$ is rootless if there is no bounded linear operator $S$ and no positive integer $m\geq 2$ such that $S^m=T$. Criteria and examples of rootlessness are given. This leads to a study of ascent and descent whether finite or infinite for $T$ with examples having infinite ascent and descent.
Keywords:
fredholm operator banach space say rootless there bounded linear operator positive integer geq criteria examples rootlessness given leads study ascent descent whether finite infinite examples having infinite ascent descent
Affiliations des auteurs :
Bertram Yood  1
@article{10_4064_sm158_3_3,
author = {Bertram Yood},
title = {Ascent, descent and roots of {Fredholm} operators},
journal = {Studia Mathematica},
pages = {219--226},
year = {2003},
volume = {158},
number = {3},
doi = {10.4064/sm158-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-3/}
}
Bertram Yood. Ascent, descent and roots of Fredholm operators. Studia Mathematica, Tome 158 (2003) no. 3, pp. 219-226. doi: 10.4064/sm158-3-3
Cité par Sources :