Mean ergodicity for compact operators
Studia Mathematica, Tome 158 (2003) no. 3, pp. 207-217

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A mean ergodic theorem is proved for a compact operator on a Banach space without assuming mean-boundedness. Some related results are also presented.
DOI : 10.4064/sm158-3-2
Keywords: mean ergodic theorem proved compact operator banach space without assuming mean boundedness related results presented

Heydar Radjavi 1 ; Ping-Kwan Tam 2 ; Kok-Keong Tan 1

1 Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada, B3H 3J5
2 Department of Mathematics Chinese University of Hong Kong Shatin, New Territories, Hong Kong
@article{10_4064_sm158_3_2,
     author = {Heydar Radjavi and Ping-Kwan Tam and Kok-Keong Tan},
     title = {Mean ergodicity for compact operators},
     journal = {Studia Mathematica},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2003},
     doi = {10.4064/sm158-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-2/}
}
TY  - JOUR
AU  - Heydar Radjavi
AU  - Ping-Kwan Tam
AU  - Kok-Keong Tan
TI  - Mean ergodicity for compact operators
JO  - Studia Mathematica
PY  - 2003
SP  - 207
EP  - 217
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-2/
DO  - 10.4064/sm158-3-2
LA  - en
ID  - 10_4064_sm158_3_2
ER  - 
%0 Journal Article
%A Heydar Radjavi
%A Ping-Kwan Tam
%A Kok-Keong Tan
%T Mean ergodicity for compact operators
%J Studia Mathematica
%D 2003
%P 207-217
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-2/
%R 10.4064/sm158-3-2
%G en
%F 10_4064_sm158_3_2
Heydar Radjavi; Ping-Kwan Tam; Kok-Keong Tan. Mean ergodicity for compact operators. Studia Mathematica, Tome 158 (2003) no. 3, pp. 207-217. doi: 10.4064/sm158-3-2

Cité par Sources :