Mean ergodicity for compact operators
Studia Mathematica, Tome 158 (2003) no. 3, pp. 207-217
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A mean ergodic theorem is proved for a compact operator on a Banach space without assuming mean-boundedness. Some related results are also presented.
Keywords:
mean ergodic theorem proved compact operator banach space without assuming mean boundedness related results presented
Affiliations des auteurs :
Heydar Radjavi 1 ; Ping-Kwan Tam 2 ; Kok-Keong Tan 1
@article{10_4064_sm158_3_2,
author = {Heydar Radjavi and Ping-Kwan Tam and Kok-Keong Tan},
title = {Mean ergodicity for compact operators},
journal = {Studia Mathematica},
pages = {207--217},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2003},
doi = {10.4064/sm158-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-2/}
}
TY - JOUR AU - Heydar Radjavi AU - Ping-Kwan Tam AU - Kok-Keong Tan TI - Mean ergodicity for compact operators JO - Studia Mathematica PY - 2003 SP - 207 EP - 217 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-3-2/ DO - 10.4064/sm158-3-2 LA - en ID - 10_4064_sm158_3_2 ER -
Heydar Radjavi; Ping-Kwan Tam; Kok-Keong Tan. Mean ergodicity for compact operators. Studia Mathematica, Tome 158 (2003) no. 3, pp. 207-217. doi: 10.4064/sm158-3-2
Cité par Sources :