1Facultad de Matemáticas Universidad de Sevilla Aptdo. 1160, Sevilla 41080, Spain 2Math.-Geogr. Fakultät Katholische Universität Eichstätt-Ingolstadt D-85072 Eichstätt, Germany
Studia Mathematica, Tome 158 (2003) no. 2, pp. 131-152
Refinements of the classical Sobolev inequality lead to optimal domain problems in a natural way. This is made precise in recent work of Edmunds, Kerman and Pick; the fundamental technique is to prove that the (generalized) Sobolev inequality is equivalent to the boundedness of an associated kernel operator on $[0,1]$. We make a detailed study of both the optimal domain, providing various characterizations of it, and of properties of the kernel operator when it is extended to act in its optimal domain. Several results are devoted to identifying the maximal rearrangement invariant space inside the optimal domain. The methods and techniques used involve interpolation theory, Banach function spaces and vector integration.
@article{10_4064_sm158_2_3,
author = {Guillermo P. Curbera and Werner J. Ricker},
title = {Optimal domains for the kernel operator
associated with {Sobolev's} inequality},
journal = {Studia Mathematica},
pages = {131--152},
year = {2003},
volume = {158},
number = {2},
doi = {10.4064/sm158-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-3/}
}
TY - JOUR
AU - Guillermo P. Curbera
AU - Werner J. Ricker
TI - Optimal domains for the kernel operator
associated with Sobolev's inequality
JO - Studia Mathematica
PY - 2003
SP - 131
EP - 152
VL - 158
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-3/
DO - 10.4064/sm158-2-3
LA - en
ID - 10_4064_sm158_2_3
ER -
%0 Journal Article
%A Guillermo P. Curbera
%A Werner J. Ricker
%T Optimal domains for the kernel operator
associated with Sobolev's inequality
%J Studia Mathematica
%D 2003
%P 131-152
%V 158
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-3/
%R 10.4064/sm158-2-3
%G en
%F 10_4064_sm158_2_3
Guillermo P. Curbera; Werner J. Ricker. Optimal domains for the kernel operator
associated with Sobolev's inequality. Studia Mathematica, Tome 158 (2003) no. 2, pp. 131-152. doi: 10.4064/sm158-2-3