Optimal domains for the kernel operator
 associated with Sobolev's inequality
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 158 (2003) no. 2, pp. 131-152
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Refinements of the classical Sobolev inequality lead to optimal domain problems in a natural way. This is made precise in recent work of Edmunds, Kerman and Pick; the fundamental technique is to prove that the (generalized) Sobolev inequality is equivalent to the boundedness of an associated kernel operator on $[0,1]$. We make a detailed study of both the optimal domain, providing various characterizations of it, and of properties of the kernel operator when it is extended to act in its optimal domain. Several results are devoted to identifying the maximal rearrangement invariant space inside the optimal domain. The methods and techniques used involve interpolation theory, Banach function spaces and vector integration.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
refinements classical sobolev inequality lead optimal domain problems natural made precise recent work edmunds kerman pick fundamental technique prove generalized sobolev inequality equivalent boundedness associated kernel operator make detailed study optimal domain providing various characterizations properties kernel operator extended act its optimal domain several results devoted identifying maximal rearrangement invariant space inside optimal domain methods techniques involve interpolation theory banach function spaces vector integration
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Guillermo P. Curbera 1 ; Werner J. Ricker 2
@article{10_4064_sm158_2_3,
     author = {Guillermo P. Curbera and Werner J. Ricker},
     title = {Optimal domains for the kernel operator
 associated with {Sobolev's} inequality},
     journal = {Studia Mathematica},
     pages = {131--152},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {2003},
     doi = {10.4064/sm158-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-3/}
}
                      
                      
                    TY - JOUR AU - Guillermo P. Curbera AU - Werner J. Ricker TI - Optimal domains for the kernel operator associated with Sobolev's inequality JO - Studia Mathematica PY - 2003 SP - 131 EP - 152 VL - 158 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-3/ DO - 10.4064/sm158-2-3 LA - en ID - 10_4064_sm158_2_3 ER -
%0 Journal Article %A Guillermo P. Curbera %A Werner J. Ricker %T Optimal domains for the kernel operator associated with Sobolev's inequality %J Studia Mathematica %D 2003 %P 131-152 %V 158 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm158-2-3/ %R 10.4064/sm158-2-3 %G en %F 10_4064_sm158_2_3
Guillermo P. Curbera; Werner J. Ricker. Optimal domains for the kernel operator associated with Sobolev's inequality. Studia Mathematica, Tome 158 (2003) no. 2, pp. 131-152. doi: 10.4064/sm158-2-3
Cité par Sources :