Remarks on a theorem by N. Yu. Antonov
Studia Mathematica, Tome 158 (2003) no. 1, pp. 79-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We extend some results of N. Yu. Antonov on convergence of Fourier series to more general settings. One special feature of our work is that we do not assume smoothness for the kernels in our hypotheses. This has interesting applications to convergence with respect to general orthonormal systems, like the Walsh–Fourier system, for which we prove a.e. convergence in the class $L\mathop {\rm log}\nolimits L \mathop {\rm log}\nolimits \mathop {\rm log}\nolimits \mathop {\rm log}\nolimits L$. Other applications are given in the theory of differentiation of integrals.
Keywords:
extend results antonov convergence fourier series general settings special feature work assume smoothness kernels hypotheses has interesting applications convergence respect general orthonormal systems walsh fourier system which prove convergence class mathop log nolimits mathop log nolimits mathop log nolimits mathop log nolimits other applications given theory differentiation integrals
Affiliations des auteurs :
Per Sjölin 1 ; Fernando Soria 2
@article{10_4064_sm158_1_7,
author = {Per Sj\"olin and Fernando Soria},
title = {Remarks on a theorem by {N.} {Yu.} {Antonov}},
journal = {Studia Mathematica},
pages = {79--97},
publisher = {mathdoc},
volume = {158},
number = {1},
year = {2003},
doi = {10.4064/sm158-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-7/}
}
Per Sjölin; Fernando Soria. Remarks on a theorem by N. Yu. Antonov. Studia Mathematica, Tome 158 (2003) no. 1, pp. 79-97. doi: 10.4064/sm158-1-7
Cité par Sources :