On the number of minimal pairs of compact
convex sets that are not translates of one another
Studia Mathematica, Tome 158 (2003) no. 1, pp. 59-63
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $[A,B]$ be the family of pairs of compact convex sets equivalent to $(A,B)$. We prove that the cardinality of the set of minimal pairs in $[A,B]$ that are not translates of one another is either 1 or greater than $\aleph _{0}$.
Keywords:
family pairs compact convex sets equivalent prove cardinality set minimal pairs translates another either greater aleph
Affiliations des auteurs :
J. Grzybowski 1 ; R. Urbański 1
@article{10_4064_sm158_1_5,
author = {J. Grzybowski and R. Urba\'nski},
title = {On the number of minimal pairs of compact
convex sets that are not translates of one another},
journal = {Studia Mathematica},
pages = {59--63},
publisher = {mathdoc},
volume = {158},
number = {1},
year = {2003},
doi = {10.4064/sm158-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-5/}
}
TY - JOUR AU - J. Grzybowski AU - R. Urbański TI - On the number of minimal pairs of compact convex sets that are not translates of one another JO - Studia Mathematica PY - 2003 SP - 59 EP - 63 VL - 158 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-5/ DO - 10.4064/sm158-1-5 LA - en ID - 10_4064_sm158_1_5 ER -
%0 Journal Article %A J. Grzybowski %A R. Urbański %T On the number of minimal pairs of compact convex sets that are not translates of one another %J Studia Mathematica %D 2003 %P 59-63 %V 158 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-5/ %R 10.4064/sm158-1-5 %G en %F 10_4064_sm158_1_5
J. Grzybowski; R. Urbański. On the number of minimal pairs of compact convex sets that are not translates of one another. Studia Mathematica, Tome 158 (2003) no. 1, pp. 59-63. doi: 10.4064/sm158-1-5
Cité par Sources :