Growth estimates for generalized factors of $H^p$ spaces
Studia Mathematica, Tome 158 (2003) no. 1, pp. 19-38

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

With $\varphi $ an inner function and $M_{\varphi }$ the multiplication operator on a given Hardy space it is known that for any given function $f$ in the Hardy space we may use the Wold decomposition to obtain a factorization of the given $f$ (not the Riesz factorization). This new factorization has been shown to be useful in the study of commutants of Toeplitz operators. We study the smoothness of each factor of this factorization. We show in some cases that the factors lie in the same Hardy space (or smoothness class) as the given function $f$. We also construct an example to show that there are bounded, holomorphic functions which have factors that are not in a given Hardy $p$-space. Many of our results are produced by studying a natural class of positive measures associated to the given inner function.
DOI : 10.4064/sm158-1-3
Keywords: varphi inner function varphi multiplication operator given hardy space known given function hardy space may wold decomposition obtain factorization given riesz factorization factorization has shown useful study commutants toeplitz operators study smoothness each factor factorization cases factors lie hardy space smoothness class given function construct example there bounded holomorphic functions which have factors given hardy p space many results produced studying natural class positive measures associated given inner function

Joseph A. Cima 1 ; Angeliki Kazas 2 ; Michael I. Stessin 3

1 Department of Mathematics University of North Carolina 346 Phillips Hall 3250 Chapel Hill, NC 27599-3250, U.S.A.
2 Department of Mathematics, Computer Science, and Statistics SUNY at Oneonta Oneonta, NY 13820, U.S.A.
3 Department of Mathematics and Statistics SUNY at Albany Albany, NY 12222, U.S.A.
@article{10_4064_sm158_1_3,
     author = {Joseph A. Cima and Angeliki Kazas and Michael I. Stessin},
     title = {Growth estimates for generalized factors of $H^p$ spaces},
     journal = {Studia Mathematica},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {158},
     number = {1},
     year = {2003},
     doi = {10.4064/sm158-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-3/}
}
TY  - JOUR
AU  - Joseph A. Cima
AU  - Angeliki Kazas
AU  - Michael I. Stessin
TI  - Growth estimates for generalized factors of $H^p$ spaces
JO  - Studia Mathematica
PY  - 2003
SP  - 19
EP  - 38
VL  - 158
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-3/
DO  - 10.4064/sm158-1-3
LA  - en
ID  - 10_4064_sm158_1_3
ER  - 
%0 Journal Article
%A Joseph A. Cima
%A Angeliki Kazas
%A Michael I. Stessin
%T Growth estimates for generalized factors of $H^p$ spaces
%J Studia Mathematica
%D 2003
%P 19-38
%V 158
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-3/
%R 10.4064/sm158-1-3
%G en
%F 10_4064_sm158_1_3
Joseph A. Cima; Angeliki Kazas; Michael I. Stessin. Growth estimates for generalized factors of $H^p$ spaces. Studia Mathematica, Tome 158 (2003) no. 1, pp. 19-38. doi: 10.4064/sm158-1-3

Cité par Sources :