A numerical radius inequality and an estimate for the
numerical radius of the Frobenius companion matrix
Studia Mathematica, Tome 158 (2003) no. 1, pp. 11-17
It is shown that if $A$ is a bounded linear operator
on a complex Hilbert space, then
$$
w(A) \le \frac{1}{2} (\| A \| + \| A^2 \|^{1/2} ),
$$
where $w(A)$ and $\|A\|$ are the numerical radius and the usual operator
norm of $A$, respectively.
An application of this inequality is given to obtain a new
estimate for the numerical radius of the Frobenius companion matrix.
Bounds for the zeros of polynomials are also given.
Keywords:
shown bounded linear operator complex hilbert space frac where numerical radius usual operator norm respectively application inequality given obtain estimate numerical radius frobenius companion matrix bounds zeros polynomials given
Affiliations des auteurs :
Fuad Kittaneh  1
@article{10_4064_sm158_1_2,
author = {Fuad Kittaneh},
title = {A numerical radius inequality and an estimate for the
numerical radius of the {Frobenius} companion matrix},
journal = {Studia Mathematica},
pages = {11--17},
year = {2003},
volume = {158},
number = {1},
doi = {10.4064/sm158-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-2/}
}
TY - JOUR AU - Fuad Kittaneh TI - A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix JO - Studia Mathematica PY - 2003 SP - 11 EP - 17 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-2/ DO - 10.4064/sm158-1-2 LA - en ID - 10_4064_sm158_1_2 ER -
%0 Journal Article %A Fuad Kittaneh %T A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix %J Studia Mathematica %D 2003 %P 11-17 %V 158 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-2/ %R 10.4064/sm158-1-2 %G en %F 10_4064_sm158_1_2
Fuad Kittaneh. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Mathematica, Tome 158 (2003) no. 1, pp. 11-17. doi: 10.4064/sm158-1-2
Cité par Sources :