We prove that if ${\mit\Lambda }\in M_p({\mathbb R}^N)$ and has compact support then ${\mit\Lambda }$ is a weak summability kernel for $1 p \infty $, where $ M_p({\mathbb R}^N)$ is the space of multipliers of $L^p({\mathbb R}^N)$.
@article{10_4064_sm158_1_1,
author = {P. Mohanty and S. Madan},
title = {Extensions of weak type multipliers},
journal = {Studia Mathematica},
pages = {1--10},
year = {2003},
volume = {158},
number = {1},
doi = {10.4064/sm158-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-1/}
}
TY - JOUR
AU - P. Mohanty
AU - S. Madan
TI - Extensions of weak type multipliers
JO - Studia Mathematica
PY - 2003
SP - 1
EP - 10
VL - 158
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-1/
DO - 10.4064/sm158-1-1
LA - en
ID - 10_4064_sm158_1_1
ER -
%0 Journal Article
%A P. Mohanty
%A S. Madan
%T Extensions of weak type multipliers
%J Studia Mathematica
%D 2003
%P 1-10
%V 158
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm158-1-1/
%R 10.4064/sm158-1-1
%G en
%F 10_4064_sm158_1_1
P. Mohanty; S. Madan. Extensions of weak type multipliers. Studia Mathematica, Tome 158 (2003) no. 1, pp. 1-10. doi: 10.4064/sm158-1-1