Calkin algebras for Banach spaces with finitely
 decomposable quotients
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 157 (2003) no. 3, pp. 279-293
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              For a Banach space $X$ such that all quotients only admit direct decompositions with a number of summands smaller than or equal to $n$, we show that every operator $T$ on $X$ can be identified with an $n\times n$ scalar matrix modulo the strictly cosingular operators $SC(X)$. More precisely, we obtain an algebra isomorphism from the Calkin algebra $L(X)/SC(X)$ onto a subalgebra of the algebra of $n\times n$ scalar matrices which is triangularizable when $X$ is indecomposable. From this fact we get some information on the class of all semi-Fredholm operators on $X$ and on the essential spectrum of an operator acting on $X$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
banach space quotients only admit direct decompositions number summands smaller equal every operator identified times scalar matrix modulo strictly cosingular operators precisely obtain algebra isomorphism calkin algebra subalgebra algebra times scalar matrices which triangularizable indecomposable get information class semi fredholm operators essential spectrum operator acting
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Manuel González 1 ; José M. Herrera 1
@article{10_4064_sm157_3_3,
     author = {Manuel Gonz\'alez and Jos\'e M. Herrera},
     title = {Calkin algebras for {Banach} spaces with finitely
 decomposable quotients},
     journal = {Studia Mathematica},
     pages = {279--293},
     publisher = {mathdoc},
     volume = {157},
     number = {3},
     year = {2003},
     doi = {10.4064/sm157-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-3-3/}
}
                      
                      
                    TY - JOUR AU - Manuel González AU - José M. Herrera TI - Calkin algebras for Banach spaces with finitely decomposable quotients JO - Studia Mathematica PY - 2003 SP - 279 EP - 293 VL - 157 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm157-3-3/ DO - 10.4064/sm157-3-3 LA - en ID - 10_4064_sm157_3_3 ER -
%0 Journal Article %A Manuel González %A José M. Herrera %T Calkin algebras for Banach spaces with finitely decomposable quotients %J Studia Mathematica %D 2003 %P 279-293 %V 157 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm157-3-3/ %R 10.4064/sm157-3-3 %G en %F 10_4064_sm157_3_3
Manuel González; José M. Herrera. Calkin algebras for Banach spaces with finitely decomposable quotients. Studia Mathematica, Tome 157 (2003) no. 3, pp. 279-293. doi: 10.4064/sm157-3-3
Cité par Sources :