Geometric characterization for affine
mappings and Teichmüller mappings
Studia Mathematica, Tome 157 (2003) no. 1, pp. 71-82
We characterize affine mappings on the unit disk and on rectangles by module conditions. The main result generalizes the classic Schwarz lemma. As an application, we give a sufficient condition for a $K$-quasiconformal mapping on a Riemann surface to be a Teichmüller mapping.
Keywords:
characterize affine mappings unit disk rectangles module conditions main result generalizes classic schwarz lemma application sufficient condition k quasiconformal mapping riemann surface teichm ller mapping
Affiliations des auteurs :
Zhiguo Chen  1
@article{10_4064_sm157_1_6,
author = {Zhiguo Chen},
title = {Geometric characterization for affine
mappings and {Teichm\"uller} mappings},
journal = {Studia Mathematica},
pages = {71--82},
year = {2003},
volume = {157},
number = {1},
doi = {10.4064/sm157-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-6/}
}
Zhiguo Chen. Geometric characterization for affine mappings and Teichmüller mappings. Studia Mathematica, Tome 157 (2003) no. 1, pp. 71-82. doi: 10.4064/sm157-1-6
Cité par Sources :