Geometric characterization for affine mappings and Teichmüller mappings
Studia Mathematica, Tome 157 (2003) no. 1, pp. 71-82

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize affine mappings on the unit disk and on rectangles by module conditions. The main result generalizes the classic Schwarz lemma. As an application, we give a sufficient condition for a $K$-quasiconformal mapping on a Riemann surface to be a Teichmüller mapping.
DOI : 10.4064/sm157-1-6
Keywords: characterize affine mappings unit disk rectangles module conditions main result generalizes classic schwarz lemma application sufficient condition k quasiconformal mapping riemann surface teichm ller mapping

Zhiguo Chen 1

1 Department of Mathematics XiXi campus Zhejiang University Hangzhou, Zhejiang, 310028 P.R. China
@article{10_4064_sm157_1_6,
     author = {Zhiguo Chen},
     title = {Geometric characterization for affine
 mappings and {Teichm\"uller} mappings},
     journal = {Studia Mathematica},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {2003},
     doi = {10.4064/sm157-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-6/}
}
TY  - JOUR
AU  - Zhiguo Chen
TI  - Geometric characterization for affine
 mappings and Teichmüller mappings
JO  - Studia Mathematica
PY  - 2003
SP  - 71
EP  - 82
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-6/
DO  - 10.4064/sm157-1-6
LA  - en
ID  - 10_4064_sm157_1_6
ER  - 
%0 Journal Article
%A Zhiguo Chen
%T Geometric characterization for affine
 mappings and Teichmüller mappings
%J Studia Mathematica
%D 2003
%P 71-82
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-6/
%R 10.4064/sm157-1-6
%G en
%F 10_4064_sm157_1_6
Zhiguo Chen. Geometric characterization for affine
 mappings and Teichmüller mappings. Studia Mathematica, Tome 157 (2003) no. 1, pp. 71-82. doi: 10.4064/sm157-1-6

Cité par Sources :