Geometric characterization for affine
mappings and Teichmüller mappings
Studia Mathematica, Tome 157 (2003) no. 1, pp. 71-82
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize affine mappings on the unit disk and on rectangles by module conditions. The main result generalizes the classic Schwarz lemma. As an application, we give a sufficient condition for a $K$-quasiconformal mapping on a Riemann surface to be a Teichmüller mapping.
Keywords:
characterize affine mappings unit disk rectangles module conditions main result generalizes classic schwarz lemma application sufficient condition k quasiconformal mapping riemann surface teichm ller mapping
Affiliations des auteurs :
Zhiguo Chen 1
@article{10_4064_sm157_1_6,
author = {Zhiguo Chen},
title = {Geometric characterization for affine
mappings and {Teichm\"uller} mappings},
journal = {Studia Mathematica},
pages = {71--82},
publisher = {mathdoc},
volume = {157},
number = {1},
year = {2003},
doi = {10.4064/sm157-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-6/}
}
TY - JOUR AU - Zhiguo Chen TI - Geometric characterization for affine mappings and Teichmüller mappings JO - Studia Mathematica PY - 2003 SP - 71 EP - 82 VL - 157 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-6/ DO - 10.4064/sm157-1-6 LA - en ID - 10_4064_sm157_1_6 ER -
Zhiguo Chen. Geometric characterization for affine mappings and Teichmüller mappings. Studia Mathematica, Tome 157 (2003) no. 1, pp. 71-82. doi: 10.4064/sm157-1-6
Cité par Sources :