Radial derivative on bounded symmetric domains
Studia Mathematica, Tome 157 (2003) no. 1, pp. 57-70

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish weighted Hardy–Littlewood inequalities for radial derivative and fractional radial derivatives on bounded symmetric domains.
DOI : 10.4064/sm157-1-5
Keywords: establish weighted hardy littlewood inequalities radial derivative fractional radial derivatives bounded symmetric domains

Guangbin Ren 1 ; Uwe Kähler 2

1 Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, P.R. China
2 Department of Mathematics University of Aveiro 3810-193 Aveiro, Portugal
@article{10_4064_sm157_1_5,
     author = {Guangbin Ren and Uwe K\"ahler},
     title = {Radial derivative on bounded symmetric domains},
     journal = {Studia Mathematica},
     pages = {57--70},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {2003},
     doi = {10.4064/sm157-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-5/}
}
TY  - JOUR
AU  - Guangbin Ren
AU  - Uwe Kähler
TI  - Radial derivative on bounded symmetric domains
JO  - Studia Mathematica
PY  - 2003
SP  - 57
EP  - 70
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-5/
DO  - 10.4064/sm157-1-5
LA  - en
ID  - 10_4064_sm157_1_5
ER  - 
%0 Journal Article
%A Guangbin Ren
%A Uwe Kähler
%T Radial derivative on bounded symmetric domains
%J Studia Mathematica
%D 2003
%P 57-70
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm157-1-5/
%R 10.4064/sm157-1-5
%G en
%F 10_4064_sm157_1_5
Guangbin Ren; Uwe Kähler. Radial derivative on bounded symmetric domains. Studia Mathematica, Tome 157 (2003) no. 1, pp. 57-70. doi: 10.4064/sm157-1-5

Cité par Sources :