On solvability of the cohomology equation
in function spaces
Studia Mathematica, Tome 156 (2003) no. 3, pp. 277-293
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be an endomorphism of a probability measure space $({\mit\Omega },{\cal A},\mu )$, and $f$ be a real-valued measurable function on ${\mit\Omega }$. We consider the cohomology equation $f=h\circ T-h$. Conditions for the existence of real-valued measurable solutions $h$ in some function spaces are deduced. The results obtained generalize and improve a recent result of Alonso, Hong and Obaya.
Keywords:
endomorphism probability measure space mit omega cal real valued measurable function mit omega consider cohomology equation circ t h conditions existence real valued measurable solutions function spaces deduced results obtained generalize improve recent result alonso hong obaya
Affiliations des auteurs :
Ryotaro Sato 1
@article{10_4064_sm156_3_5,
author = {Ryotaro Sato},
title = {On solvability of the cohomology equation
in function spaces},
journal = {Studia Mathematica},
pages = {277--293},
publisher = {mathdoc},
volume = {156},
number = {3},
year = {2003},
doi = {10.4064/sm156-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-3-5/}
}
Ryotaro Sato. On solvability of the cohomology equation in function spaces. Studia Mathematica, Tome 156 (2003) no. 3, pp. 277-293. doi: 10.4064/sm156-3-5
Cité par Sources :