On locally convex extension of $H^{\infty }$ in the unit ball
and continuity of the Bergman projection
Studia Mathematica, Tome 156 (2003) no. 3, pp. 261-275
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define locally convex spaces $LW$ and $HW$ consisting of measurable and holomorphic functions in the unit ball, respectively, with the topology given by a family of weighted-sup seminorms. We prove that the Bergman projection is a continuous map from $LW$ onto $HW$. These are the smallest spaces having this property. We investigate the topological and algebraic properties of $HW$.
Keywords:
define locally convex spaces consisting measurable holomorphic functions unit ball respectively topology given family weighted sup seminorms prove bergman projection continuous map these smallest spaces having property investigate topological algebraic properties
Affiliations des auteurs :
M. Jasiczak 1
@article{10_4064_sm156_3_4,
author = {M. Jasiczak},
title = {On locally convex extension of $H^{\infty }$ in the unit ball
and continuity of the {Bergman} projection},
journal = {Studia Mathematica},
pages = {261--275},
publisher = {mathdoc},
volume = {156},
number = {3},
year = {2003},
doi = {10.4064/sm156-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-3-4/}
}
TY - JOUR
AU - M. Jasiczak
TI - On locally convex extension of $H^{\infty }$ in the unit ball
and continuity of the Bergman projection
JO - Studia Mathematica
PY - 2003
SP - 261
EP - 275
VL - 156
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm156-3-4/
DO - 10.4064/sm156-3-4
LA - en
ID - 10_4064_sm156_3_4
ER -
%0 Journal Article
%A M. Jasiczak
%T On locally convex extension of $H^{\infty }$ in the unit ball
and continuity of the Bergman projection
%J Studia Mathematica
%D 2003
%P 261-275
%V 156
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm156-3-4/
%R 10.4064/sm156-3-4
%G en
%F 10_4064_sm156_3_4
M. Jasiczak. On locally convex extension of $H^{\infty }$ in the unit ball
and continuity of the Bergman projection. Studia Mathematica, Tome 156 (2003) no. 3, pp. 261-275. doi: 10.4064/sm156-3-4
Cité par Sources :