Let $f_c(x,y)\equiv \sum _{j=1}^\infty \sum _{k=1}^\infty a_{jk}(1-\mathop {\rm cos}\nolimits jx)(1-\mathop {\rm cos}\nolimits ky)$ with $a_{jk}\ge 0$ for all $j,k\ge 1$. We estimate the integral $ \int _0^\pi \int _0^\pi x^{\alpha -1} y^{\beta -1} \phi (f_c(x,y))\, dx\, dy $ in terms of the coefficients $a_{jk}$, where $\alpha ,\beta \in {\mathbb R}$ and $\phi :[0,\infty ]\to [0,\infty ]$. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].
Keywords:
y equiv sum infty sum infty mathop cos nolimits mathop cos nolimits estimate integral int int alpha beta phi y terms coefficients where alpha beta mathbb phi infty infty results regarded trigonometric analogues those mazhar ricz generalize extend boas theorem
@article{10_4064_sm156_2_4,
author = {Chang-Pao Chen and Ming-Chuan Chen},
title = {Weighted integrability of double cosine series
with nonnegative coefficients},
journal = {Studia Mathematica},
pages = {133--141},
year = {2003},
volume = {156},
number = {2},
doi = {10.4064/sm156-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-4/}
}
TY - JOUR
AU - Chang-Pao Chen
AU - Ming-Chuan Chen
TI - Weighted integrability of double cosine series
with nonnegative coefficients
JO - Studia Mathematica
PY - 2003
SP - 133
EP - 141
VL - 156
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-4/
DO - 10.4064/sm156-2-4
LA - en
ID - 10_4064_sm156_2_4
ER -
%0 Journal Article
%A Chang-Pao Chen
%A Ming-Chuan Chen
%T Weighted integrability of double cosine series
with nonnegative coefficients
%J Studia Mathematica
%D 2003
%P 133-141
%V 156
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-4/
%R 10.4064/sm156-2-4
%G en
%F 10_4064_sm156_2_4
Chang-Pao Chen; Ming-Chuan Chen. Weighted integrability of double cosine series
with nonnegative coefficients. Studia Mathematica, Tome 156 (2003) no. 2, pp. 133-141. doi: 10.4064/sm156-2-4