Weighted integrability of double cosine series with nonnegative coefficients
Studia Mathematica, Tome 156 (2003) no. 2, pp. 133-141

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f_c(x,y)\equiv \sum _{j=1}^\infty \sum _{k=1}^\infty a_{jk}(1-\mathop {\rm cos}\nolimits jx)(1-\mathop {\rm cos}\nolimits ky)$ with $a_{jk}\ge 0$ for all $j,k\ge 1$. We estimate the integral $ \int _0^\pi \int _0^\pi x^{\alpha -1} y^{\beta -1} \phi (f_c(x,y))\, dx\, dy $ in terms of the coefficients $a_{jk}$, where $\alpha ,\beta \in {\mathbb R}$ and $\phi :[0,\infty ]\to [0,\infty ]$. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].
DOI : 10.4064/sm156-2-4
Keywords: y equiv sum infty sum infty mathop cos nolimits mathop cos nolimits estimate integral int int alpha beta phi y terms coefficients where alpha beta mathbb phi infty infty results regarded trigonometric analogues those mazhar ricz generalize extend boas theorem

Chang-Pao Chen 1 ; Ming-Chuan Chen 1

1 Department of Mathematics National Tsing Hua University Hsinchu, Taiwan 300, Republic of China
@article{10_4064_sm156_2_4,
     author = {Chang-Pao Chen and Ming-Chuan Chen},
     title = {Weighted integrability of double cosine series
  with nonnegative coefficients},
     journal = {Studia Mathematica},
     pages = {133--141},
     publisher = {mathdoc},
     volume = {156},
     number = {2},
     year = {2003},
     doi = {10.4064/sm156-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-4/}
}
TY  - JOUR
AU  - Chang-Pao Chen
AU  - Ming-Chuan Chen
TI  - Weighted integrability of double cosine series
  with nonnegative coefficients
JO  - Studia Mathematica
PY  - 2003
SP  - 133
EP  - 141
VL  - 156
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-4/
DO  - 10.4064/sm156-2-4
LA  - en
ID  - 10_4064_sm156_2_4
ER  - 
%0 Journal Article
%A Chang-Pao Chen
%A Ming-Chuan Chen
%T Weighted integrability of double cosine series
  with nonnegative coefficients
%J Studia Mathematica
%D 2003
%P 133-141
%V 156
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-4/
%R 10.4064/sm156-2-4
%G en
%F 10_4064_sm156_2_4
Chang-Pao Chen; Ming-Chuan Chen. Weighted integrability of double cosine series
  with nonnegative coefficients. Studia Mathematica, Tome 156 (2003) no. 2, pp. 133-141. doi: 10.4064/sm156-2-4

Cité par Sources :