Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations on operator algebras
Studia Mathematica, Tome 156 (2003) no. 2, pp. 121-131

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the spaces of $(\alpha , \beta )$-derivations on certain operator algebras are topologically reflexive in the weak operator topology. Characterizations of automorphisms and $(\alpha ,\beta )$-derivations on reflexive algebras are also given.
DOI : 10.4064/sm156-2-3
Keywords: prove spaces alpha beta derivations certain operator algebras topologically reflexive weak operator topology characterizations automorphisms alpha beta derivations reflexive algebras given

Wu Jing 1 ; Shijie Lu 1

1 Department of Mathematics Yuquan Campus Zhejiang University Hangzhou 310027 People's Republic of China
@article{10_4064_sm156_2_3,
     author = {Wu Jing and Shijie Lu},
     title = {Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations
 on operator algebras},
     journal = {Studia Mathematica},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {156},
     number = {2},
     year = {2003},
     doi = {10.4064/sm156-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-3/}
}
TY  - JOUR
AU  - Wu Jing
AU  - Shijie Lu
TI  - Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations
 on operator algebras
JO  - Studia Mathematica
PY  - 2003
SP  - 121
EP  - 131
VL  - 156
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-3/
DO  - 10.4064/sm156-2-3
LA  - en
ID  - 10_4064_sm156_2_3
ER  - 
%0 Journal Article
%A Wu Jing
%A Shijie Lu
%T Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations
 on operator algebras
%J Studia Mathematica
%D 2003
%P 121-131
%V 156
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-3/
%R 10.4064/sm156-2-3
%G en
%F 10_4064_sm156_2_3
Wu Jing; Shijie Lu. Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations
 on operator algebras. Studia Mathematica, Tome 156 (2003) no. 2, pp. 121-131. doi: 10.4064/sm156-2-3

Cité par Sources :