Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations
on operator algebras
Studia Mathematica, Tome 156 (2003) no. 2, pp. 121-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the spaces of $(\alpha , \beta )$-derivations on certain operator algebras are topologically reflexive in the weak operator topology. Characterizations of automorphisms and $(\alpha ,\beta )$-derivations on reflexive algebras are also given.
Keywords:
prove spaces alpha beta derivations certain operator algebras topologically reflexive weak operator topology characterizations automorphisms alpha beta derivations reflexive algebras given
Affiliations des auteurs :
Wu Jing 1 ; Shijie Lu 1
@article{10_4064_sm156_2_3,
author = {Wu Jing and Shijie Lu},
title = {Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations
on operator algebras},
journal = {Studia Mathematica},
pages = {121--131},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {2003},
doi = {10.4064/sm156-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-3/}
}
TY - JOUR AU - Wu Jing AU - Shijie Lu TI - Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations on operator algebras JO - Studia Mathematica PY - 2003 SP - 121 EP - 131 VL - 156 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-3/ DO - 10.4064/sm156-2-3 LA - en ID - 10_4064_sm156_2_3 ER -
%0 Journal Article %A Wu Jing %A Shijie Lu %T Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations on operator algebras %J Studia Mathematica %D 2003 %P 121-131 %V 156 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm156-2-3/ %R 10.4064/sm156-2-3 %G en %F 10_4064_sm156_2_3
Wu Jing; Shijie Lu. Topological reflexivity of the spaces of $(\alpha , \beta )$-derivations on operator algebras. Studia Mathematica, Tome 156 (2003) no. 2, pp. 121-131. doi: 10.4064/sm156-2-3
Cité par Sources :