On the power boundedness of certain
Volterra operator pencils
Studia Mathematica, Tome 156 (2003) no. 1, pp. 59-66
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $V$ be the classical Volterra operator on $L^2(0,1)$, and
let $z$ be a complex number. We prove that $I-zV$ is power
bounded if and only if $\mathop{\rm Re} z \ge 0$ and $\mathop{\rm Im} z=0$, while $I-zV^2$ is power bounded if and only if $z=0$. The
first result yields
$$\|(I-V)^n-(I-V)^{n+1}\|=O(n^{-{1 / 2}})\quad\
{\rm as}\ n\rightarrow\infty
,$$
an improvement of [Py]. We also study some other
related operator pencils.
Keywords:
classical volterra operator complex number prove i zv power bounded only mathop mathop while i zv power bounded only first result yields i v n i v quad rightarrow infty improvement study other related operator pencils
Affiliations des auteurs :
Dashdondog Tsedenbayar  1
@article{10_4064_sm156_1_4,
author = {Dashdondog Tsedenbayar},
title = {On the power boundedness of certain
{Volterra} operator pencils},
journal = {Studia Mathematica},
pages = {59--66},
year = {2003},
volume = {156},
number = {1},
doi = {10.4064/sm156-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-1-4/}
}
Dashdondog Tsedenbayar. On the power boundedness of certain Volterra operator pencils. Studia Mathematica, Tome 156 (2003) no. 1, pp. 59-66. doi: 10.4064/sm156-1-4
Cité par Sources :