On the power boundedness of certain
 Volterra operator pencils
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 156 (2003) no. 1, pp. 59-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $V$ be the classical Volterra operator on $L^2(0,1)$, and
let $z$ be a complex number. We prove that $I-zV$ is power
bounded if and only if $\mathop{\rm Re} z \ge 0$ and $\mathop{\rm Im} z=0$, while $I-zV^2$ is power bounded if and only if $z=0$. The
first result yields
$$\|(I-V)^n-(I-V)^{n+1}\|=O(n^{-{1 / 2}})\quad\
{\rm as}\ n\rightarrow\infty
,$$ 
an improvement of [Py]. We also study some other
related operator pencils. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
classical volterra operator complex number prove i zv power bounded only mathop mathop while i zv power bounded only first result yields i v n i v quad rightarrow infty improvement study other related operator pencils
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Dashdondog Tsedenbayar 1
@article{10_4064_sm156_1_4,
     author = {Dashdondog Tsedenbayar},
     title = {On the power boundedness of certain
 {Volterra} operator pencils},
     journal = {Studia Mathematica},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {156},
     number = {1},
     year = {2003},
     doi = {10.4064/sm156-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-1-4/}
}
                      
                      
                    TY - JOUR AU - Dashdondog Tsedenbayar TI - On the power boundedness of certain Volterra operator pencils JO - Studia Mathematica PY - 2003 SP - 59 EP - 66 VL - 156 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm156-1-4/ DO - 10.4064/sm156-1-4 LA - en ID - 10_4064_sm156_1_4 ER -
Dashdondog Tsedenbayar. On the power boundedness of certain Volterra operator pencils. Studia Mathematica, Tome 156 (2003) no. 1, pp. 59-66. doi: 10.4064/sm156-1-4
Cité par Sources :