Besov spaces on spaces of homogeneous type and fractals
Studia Mathematica, Tome 156 (2003) no. 1, pp. 15-30
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mit \Gamma }$ be a compact $d$-set in ${\mathbb R}^n$ with $0 d\le n$, which includes various kinds of fractals. The author shows that the Besov spaces $B^s_{pq}({\mit \Gamma })$ defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding ${\mit \Gamma }$ as a space of homogeneous type when $0 s 1$,
$1 p \infty $ and $1\le q\le \infty $.
Keywords:
mit gamma compact d set mathbb which includes various kinds fractals author shows besov spaces mit gamma defined different equivalent methods namely via traces quarkonial decompositions sense triebel spaces those obtained regarding mit gamma space homogeneous type infty infty
Affiliations des auteurs :
Dachun Yang 1
@article{10_4064_sm156_1_2,
author = {Dachun Yang},
title = {Besov spaces on spaces of homogeneous type and fractals},
journal = {Studia Mathematica},
pages = {15--30},
publisher = {mathdoc},
volume = {156},
number = {1},
year = {2003},
doi = {10.4064/sm156-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm156-1-2/}
}
Dachun Yang. Besov spaces on spaces of homogeneous type and fractals. Studia Mathematica, Tome 156 (2003) no. 1, pp. 15-30. doi: 10.4064/sm156-1-2
Cité par Sources :