Smooth operators in the commutant of a contraction
Studia Mathematica, Tome 155 (2003) no. 3, pp. 241-263
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a completely non-unitary contraction $T$, some necessary
(and, in certain cases, sufficient) conditions are found for the
range of the $ H^{\infty} $ calculus, $ H^{\infty} (T)$, and the commutant,
$\{T\}'$, to contain non-zero compact operators, and for the
finite rank operators of $\{T\}'$ to be dense in the set of
compact operators of $\{T\}'$. A sufficient condition is given
for $\{T\}'$ to contain non-zero operators from the Schatten–von
Neumann classes $S_p$.
Keywords:
completely non unitary contraction necessary certain cases sufficient conditions found range infty calculus infty commutant contain non zero compact operators finite rank operators dense set compact operators sufficient condition given contain non zero operators schatten von neumann classes nbsp
Affiliations des auteurs :
Pascale Vitse 1
@article{10_4064_sm155_3_4,
author = {Pascale Vitse},
title = {Smooth operators in the commutant of a contraction},
journal = {Studia Mathematica},
pages = {241--263},
publisher = {mathdoc},
volume = {155},
number = {3},
year = {2003},
doi = {10.4064/sm155-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-3-4/}
}
Pascale Vitse. Smooth operators in the commutant of a contraction. Studia Mathematica, Tome 155 (2003) no. 3, pp. 241-263. doi: 10.4064/sm155-3-4
Cité par Sources :