On monotonic functions from the unit interval into
a Banach space with
uncountable sets of points of discontinuity
Studia Mathematica, Tome 155 (2003) no. 2, pp. 171-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We say that a function $f$ from $[0,1]$ to a Banach
space $X$ is increasing with respect to $E\subset X^*$ if
$x^*\circ f$ is increasing for every $x^*\in E$. We show that if
$f:[0,1]\to X$ is an increasing function with respect to a norming
subset $E$ of $X^*$ with uncountably many points of discontinuity
and $Q$ is a countable dense subset of $[0,1]$,
then
(1) $\overline{\mathop{\rm lin}\{f([0,1])\}}$ contains an order
isomorphic copy of $D(0,1)$,
(2) $\overline{\mathop{\rm lin}\{f(Q)\}}$ contains an
isomorphic copy of $C([0,1])$, (3) $\overline{
\mathop{\rm lin}\{f([0,1])\}}/\overline{ \mathop{\rm lin}\{f(Q)\}}$ contains an isomorphic
copy of $c_0({\mit\Gamma})$ for some uncountable set ${\mit\Gamma}$, (4) if
$I$ is an isomorphic embedding of $\overline{\mathop{\rm lin}\{f([0,1])\}}$
into a Banach space $Z$, then no separable complemented
subspace of $Z$ contains $I(\overline{ \mathop{\rm lin}\{f(Q)\}})$.
Keywords:
say function banach space increasing respect subset * * circ increasing every * increasing function respect norming subset * uncountably many points discontinuity countable dense subset nbsp overline mathop lin contains order isomorphic copy nbsp overline mathop lin contains isomorphic copy nbsp overline mathop lin overline mathop lin contains isomorphic copy mit gamma uncountable set mit gamma nbsp isomorphic embedding overline mathop lin banach space separable complemented subspace contains overline mathop lin
Affiliations des auteurs :
Artur Michalak 1
@article{10_4064_sm155_2_6,
author = {Artur Michalak},
title = {On monotonic functions from the unit interval into
a {Banach} space with
uncountable sets of points of discontinuity},
journal = {Studia Mathematica},
pages = {171--182},
publisher = {mathdoc},
volume = {155},
number = {2},
year = {2003},
doi = {10.4064/sm155-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-6/}
}
TY - JOUR AU - Artur Michalak TI - On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity JO - Studia Mathematica PY - 2003 SP - 171 EP - 182 VL - 155 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-6/ DO - 10.4064/sm155-2-6 LA - en ID - 10_4064_sm155_2_6 ER -
%0 Journal Article %A Artur Michalak %T On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity %J Studia Mathematica %D 2003 %P 171-182 %V 155 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-6/ %R 10.4064/sm155-2-6 %G en %F 10_4064_sm155_2_6
Artur Michalak. On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity. Studia Mathematica, Tome 155 (2003) no. 2, pp. 171-182. doi: 10.4064/sm155-2-6
Cité par Sources :