On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity
Studia Mathematica, Tome 155 (2003) no. 2, pp. 171-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We say that a function $f$ from $[0,1]$ to a Banach space $X$ is increasing with respect to $E\subset X^*$ if $x^*\circ f$ is increasing for every $x^*\in E$. We show that if $f:[0,1]\to X$ is an increasing function with respect to a norming subset $E$ of $X^*$ with uncountably many points of discontinuity and $Q$ is a countable dense subset of $[0,1]$, then (1) $\overline{\mathop{\rm lin}\{f([0,1])\}}$ contains an order isomorphic copy of $D(0,1)$, (2) $\overline{\mathop{\rm lin}\{f(Q)\}}$ contains an isomorphic copy of $C([0,1])$, (3) $\overline{ \mathop{\rm lin}\{f([0,1])\}}/\overline{ \mathop{\rm lin}\{f(Q)\}}$ contains an isomorphic copy of $c_0({\mit\Gamma})$ for some uncountable set ${\mit\Gamma}$, (4) if $I$ is an isomorphic embedding of $\overline{\mathop{\rm lin}\{f([0,1])\}}$ into a Banach space $Z$, then no separable complemented subspace of $Z$ contains $I(\overline{ \mathop{\rm lin}\{f(Q)\}})$.
DOI : 10.4064/sm155-2-6
Keywords: say function banach space increasing respect subset * * circ increasing every * increasing function respect norming subset * uncountably many points discontinuity countable dense subset nbsp overline mathop lin contains order isomorphic copy nbsp overline mathop lin contains isomorphic copy nbsp overline mathop lin overline mathop lin contains isomorphic copy mit gamma uncountable set mit gamma nbsp isomorphic embedding overline mathop lin banach space separable complemented subspace contains overline mathop lin

Artur Michalak 1

1 Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87 61-614 Poznań, Poland
@article{10_4064_sm155_2_6,
     author = {Artur Michalak},
     title = {On monotonic functions from the unit interval into
 a {Banach} space with
 uncountable sets of points of discontinuity},
     journal = {Studia Mathematica},
     pages = {171--182},
     publisher = {mathdoc},
     volume = {155},
     number = {2},
     year = {2003},
     doi = {10.4064/sm155-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-6/}
}
TY  - JOUR
AU  - Artur Michalak
TI  - On monotonic functions from the unit interval into
 a Banach space with
 uncountable sets of points of discontinuity
JO  - Studia Mathematica
PY  - 2003
SP  - 171
EP  - 182
VL  - 155
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-6/
DO  - 10.4064/sm155-2-6
LA  - en
ID  - 10_4064_sm155_2_6
ER  - 
%0 Journal Article
%A Artur Michalak
%T On monotonic functions from the unit interval into
 a Banach space with
 uncountable sets of points of discontinuity
%J Studia Mathematica
%D 2003
%P 171-182
%V 155
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-6/
%R 10.4064/sm155-2-6
%G en
%F 10_4064_sm155_2_6
Artur Michalak. On monotonic functions from the unit interval into
 a Banach space with
 uncountable sets of points of discontinuity. Studia Mathematica, Tome 155 (2003) no. 2, pp. 171-182. doi: 10.4064/sm155-2-6

Cité par Sources :