Some theorems of Korovkin type
Studia Mathematica, Tome 155 (2003) no. 2, pp. 131-143
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We take another approach to the well known
theorem of Korovkin, in the following situation:
$X$, $Y$ are compact Hausdorff spaces,
$M$ is a unital subspace of
the Banach space $C(X)$ (respectively, $C_{{\mathbb R}}(X)$)
of all complex-valued
(resp., real-valued)
continuous functions on $X$,
$S\subset M$
a complex (resp., real) function space on $X$,
${\{\phi_{n}\}}$ a
sequence of unital linear contractions
from $M$ into
$C(Y)$ (resp., $C_{{\mathbb R}}(Y)$),
and $\phi_{\infty}$ a
linear isometry
from $M$ into $C(Y)$ (resp., $C_{{\mathbb R}}(Y)$).
We show,
under the assumption that ${\mit\Pi}_{N} \subset {\mit\Pi}_{T}$,
where ${\mit\Pi}_{N}$ is
the Choquet boundary for
$N=\mathop{\rm Span}
(\bigcup_{1\le n\le \infty}N_n)$,
$N_n=\phi_{n}(M)\ (n=1,2,\ldots , \infty)$,
and ${\mit\Pi}_{T}$ the Choquet boundary for
${T=\phi_{\infty}(S)}$,
that ${\{\phi_{n}(f)\}}$ converges pointwise to
$\phi_{\infty}(f)$
for any $f\in M$ provided $\{\phi_{n}(f)\}$
converges pointwise to ${\phi_{\infty}(f)}$
for any $f\in S$;
that ${\{\phi_{n}(f)\}} $
converges uniformly
on any compact subset of ${{\mit\Pi}_N} $
to
$\phi_{\infty}(f)$
for any $f\in M$ provided ${\{\phi_{n}(f)\}} $
converges uniformly to ${\phi_{\infty}(f)}$
for any $f\in S$; and that,
in the case where $S$ is a function algebra,
$\{\phi_n\}$ norm
converges to $\phi_{\infty}$
on $M$ provided ${\{\phi_{n}(f)\}}$
norm converges to $\phi_{\infty}$
on $S$.
The proofs are in the spirit
of the original one for
the theorem of Korovkin.
Keywords:
another approach known theorem korovkin following situation compact hausdorff spaces unital subspace banach space respectively mathbb complex valued resp real valued continuous functions subset complex resp real function space phi sequence unital linear contractions resp mathbb phi infty linear isometry resp mathbb under assumption mit subset mit where mit choquet boundary mathop span bigcup infty phi ldots infty mit choquet boundary phi infty phi converges pointwise phi infty provided phi converges pointwise phi infty phi converges uniformly compact subset mit phi infty provided phi converges uniformly phi infty where function algebra phi norm converges phi infty provided phi norm converges phi infty proofs spirit original theorem korovkin
Affiliations des auteurs :
Tomoko Hachiro 1 ; Takateru Okayasu 2
@article{10_4064_sm155_2_3,
author = {Tomoko Hachiro and Takateru Okayasu},
title = {Some theorems of {Korovkin} type},
journal = {Studia Mathematica},
pages = {131--143},
publisher = {mathdoc},
volume = {155},
number = {2},
year = {2003},
doi = {10.4064/sm155-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-3/}
}
Tomoko Hachiro; Takateru Okayasu. Some theorems of Korovkin type. Studia Mathematica, Tome 155 (2003) no. 2, pp. 131-143. doi: 10.4064/sm155-2-3
Cité par Sources :