Some theorems of Korovkin type
Studia Mathematica, Tome 155 (2003) no. 2, pp. 131-143

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We take another approach to the well known theorem of Korovkin, in the following situation: $X$, $Y$ are compact Hausdorff spaces, $M$ is a unital subspace of the Banach space $C(X)$ (respectively, $C_{{\mathbb R}}(X)$) of all complex-valued (resp., real-valued) continuous functions on $X$, $S\subset M$ a complex (resp., real) function space on $X$, ${\{\phi_{n}\}}$ a sequence of unital linear contractions from $M$ into $C(Y)$ (resp., $C_{{\mathbb R}}(Y)$), and $\phi_{\infty}$ a linear isometry from $M$ into $C(Y)$ (resp., $C_{{\mathbb R}}(Y)$). We show, under the assumption that ${\mit\Pi}_{N} \subset {\mit\Pi}_{T}$, where ${\mit\Pi}_{N}$ is the Choquet boundary for $N=\mathop{\rm Span} (\bigcup_{1\le n\le \infty}N_n)$, $N_n=\phi_{n}(M)\ (n=1,2,\ldots , \infty)$, and ${\mit\Pi}_{T}$ the Choquet boundary for ${T=\phi_{\infty}(S)}$, that ${\{\phi_{n}(f)\}}$ converges pointwise to $\phi_{\infty}(f)$ for any $f\in M$ provided $\{\phi_{n}(f)\}$ converges pointwise to ${\phi_{\infty}(f)}$ for any $f\in S$; that ${\{\phi_{n}(f)\}} $ converges uniformly on any compact subset of ${{\mit\Pi}_N} $ to $\phi_{\infty}(f)$ for any $f\in M$ provided ${\{\phi_{n}(f)\}} $ converges uniformly to ${\phi_{\infty}(f)}$ for any $f\in S$; and that, in the case where $S$ is a function algebra, $\{\phi_n\}$ norm converges to $\phi_{\infty}$ on $M$ provided ${\{\phi_{n}(f)\}}$ norm converges to $\phi_{\infty}$ on $S$. The proofs are in the spirit of the original one for the theorem of Korovkin.
DOI : 10.4064/sm155-2-3
Keywords: another approach known theorem korovkin following situation compact hausdorff spaces unital subspace banach space respectively mathbb complex valued resp real valued continuous functions subset complex resp real function space phi sequence unital linear contractions resp mathbb phi infty linear isometry resp mathbb under assumption mit subset mit where mit choquet boundary mathop span bigcup infty phi ldots infty mit choquet boundary phi infty phi converges pointwise phi infty provided phi converges pointwise phi infty phi converges uniformly compact subset mit phi infty provided phi converges uniformly phi infty where function algebra phi norm converges phi infty provided phi norm converges phi infty proofs spirit original theorem korovkin

Tomoko Hachiro 1 ; Takateru Okayasu 2

1 Mathematics Division Sendai Shirayuri Gakuen High School Murasaki-Yama 1-2-1, Izumi-ku Sendai 981-3205, Japan
2 Department of Mathematical Sciences Faculty of Science Yamagata University Yamagata 990-8560, Japan
@article{10_4064_sm155_2_3,
     author = {Tomoko Hachiro and Takateru Okayasu},
     title = {Some theorems of {Korovkin} type},
     journal = {Studia Mathematica},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {155},
     number = {2},
     year = {2003},
     doi = {10.4064/sm155-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-3/}
}
TY  - JOUR
AU  - Tomoko Hachiro
AU  - Takateru Okayasu
TI  - Some theorems of Korovkin type
JO  - Studia Mathematica
PY  - 2003
SP  - 131
EP  - 143
VL  - 155
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-3/
DO  - 10.4064/sm155-2-3
LA  - en
ID  - 10_4064_sm155_2_3
ER  - 
%0 Journal Article
%A Tomoko Hachiro
%A Takateru Okayasu
%T Some theorems of Korovkin type
%J Studia Mathematica
%D 2003
%P 131-143
%V 155
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm155-2-3/
%R 10.4064/sm155-2-3
%G en
%F 10_4064_sm155_2_3
Tomoko Hachiro; Takateru Okayasu. Some theorems of Korovkin type. Studia Mathematica, Tome 155 (2003) no. 2, pp. 131-143. doi: 10.4064/sm155-2-3

Cité par Sources :