Mappings preserving zero products
Studia Mathematica, Tome 155 (2003) no. 1, pp. 77-94
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\theta : {{\cal M}}\to {{\cal N}}$ be a zero-product preserving linear map between algebras. We show that under some mild conditions $\theta $ is a product of a central element and an algebra homomorphism. Our result applies to matrix algebras, standard operator algebras, $C^*$-algebras and $W^*$-algebras.
Keywords:
theta cal cal zero product preserving linear map between algebras under mild conditions theta product central element algebra homomorphism result applies matrix algebras standard operator algebras * algebras * algebras
Affiliations des auteurs :
M. A. Chebotar 1 ; W.-F. Ke 2 ; P.-H. Lee 3 ; N.-C. Wong 4
@article{10_4064_sm155_1_6,
author = {M. A. Chebotar and W.-F. Ke and P.-H. Lee and N.-C. Wong},
title = {Mappings preserving zero products},
journal = {Studia Mathematica},
pages = {77--94},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {2003},
doi = {10.4064/sm155-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-1-6/}
}
TY - JOUR AU - M. A. Chebotar AU - W.-F. Ke AU - P.-H. Lee AU - N.-C. Wong TI - Mappings preserving zero products JO - Studia Mathematica PY - 2003 SP - 77 EP - 94 VL - 155 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm155-1-6/ DO - 10.4064/sm155-1-6 LA - en ID - 10_4064_sm155_1_6 ER -
M. A. Chebotar; W.-F. Ke; P.-H. Lee; N.-C. Wong. Mappings preserving zero products. Studia Mathematica, Tome 155 (2003) no. 1, pp. 77-94. doi: 10.4064/sm155-1-6
Cité par Sources :