Une inégalité maximale sous-gaussienne
sur les espaces de tentes
Studia Mathematica, Tome 155 (2003) no. 1, pp. 23-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a maximal function (denoted by $\overline \pi $) on the tent spaces $T^p({\mathbb R}^{n+1}_+)$, $0 p\infty $, of Coifman, Meyer and Stein [8]. We prove a good-$\lambda $ estimate of subgaussian type for this maximal function and for the square function of tent spaces, leading to integrability results for $\overline \pi $. We deduce convergence results for the singular integral defining $\pi $.
Mots-clés :
introduce maximal function denoted overline tent spaces mathbb infty coifman meyer stein prove good lambda estimate subgaussian type maximal function square function tent spaces leading integrability results overline deduce convergence results singular integral defining
Affiliations des auteurs :
E. Labeye-Voisin 1
@article{10_4064_sm155_1_2,
author = {E. Labeye-Voisin},
title = {Une in\'egalit\'e maximale sous-gaussienne
sur les espaces de tentes},
journal = {Studia Mathematica},
pages = {23--36},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {2003},
doi = {10.4064/sm155-1-2},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm155-1-2/}
}
E. Labeye-Voisin. Une inégalité maximale sous-gaussienne sur les espaces de tentes. Studia Mathematica, Tome 155 (2003) no. 1, pp. 23-36. doi: 10.4064/sm155-1-2
Cité par Sources :