The Lindelöf property in Banach spaces
Studia Mathematica, Tome 154 (2003) no. 2, pp. 165-192
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A topological space $(T,\tau)$ is said to be fragmented by a
metric $d$ on $T$ if each non-empty subset of $T$ has non-empty
relatively open subsets of arbitrarily small $d$-diameter. The
basic theorem of the present paper is the following. Let
$(M,\varrho)$ be a metric space with $\varrho$ bounded and let $D$ be an
arbitrary index set. Then for a compact subset $K$ of the product
space $M^{D}$ the following four conditions are equivalent:
(i) $K$ is fragmented by $d_{D}$, where,
for each $S\subset D$,
$$d_{S}(x,y)=\sup\{\varrho(x(t),y(t)):
t\in S\}.$$(ii) For each countable subset $A$ of $D$,
$(K,d_{A})$ is separable.(iii) The space $(K,\gamma (D))$ is
Lindelöf, where $\gamma (D)$ is the topology of uniform
convergence on the family of countable subsets of $D$.(iv) $(K,\gamma (D))^{{\mathbb N}}$ is Lindelöf.The rest of the paper is devoted to applications of the basic
theorem. Here are some of them. A compact Hausdorff space $K$ is
Radon–Nikodým compact if, and only if, there is a bounded subset
$D$ of $C(K)$ separating the points of $K$ such that $(K,\gamma
(D))$ is Lindelöf. If $X$ is a Banach space and $H$ is a
weak$^{\ast}$-compact subset of the dual $X^\ast$ which is weakly
Lindelöf, then $(H,\hbox{weak})^{\mathbb N}$ is Lindelöf. Furthermore,
under the same condition $\overline{{\rm span}(H)}^{\,\|\ \|}$ and
$\overline{{\rm co}{(H)}}^{\,w^{\ast}}$ are weakly Lindelöf. The last
conclusion answers a question by Talagrand. Finally we apply our
basic theorem to certain classes of Banach spaces including weakly
compactly generated ones and the duals of Asplund spaces.
Keywords:
topological space tau said fragmented metric each non empty subset has non empty relatively subsets arbitrarily small d diameter basic theorem present paper following varrho metric space varrho bounded arbitrary index set compact subset product space following conditions equivalent fragmented where each subset sup varrho each countable subset separable iii space gamma lindel where gamma topology uniform convergence family countable subsets gamma mathbb lindel rest paper devoted applications basic theorem here compact hausdorff space radon nikod compact only there bounded subset separating points gamma lindel banach space weak ast compact subset dual ast which weakly lindel hbox weak mathbb lindel furthermore under condition overline span overline ast weakly lindel conclusion answers question talagrand finally apply basic theorem certain classes banach spaces including weakly compactly generated duals asplund spaces
Affiliations des auteurs :
B. Cascales 1 ; I. Namioka 2 ; J. Orihuela 3
@article{10_4064_sm154_2_4,
author = {B. Cascales and I. Namioka and J. Orihuela},
title = {The {Lindel\"of} property in {Banach} spaces},
journal = {Studia Mathematica},
pages = {165--192},
publisher = {mathdoc},
volume = {154},
number = {2},
year = {2003},
doi = {10.4064/sm154-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm154-2-4/}
}
TY - JOUR AU - B. Cascales AU - I. Namioka AU - J. Orihuela TI - The Lindelöf property in Banach spaces JO - Studia Mathematica PY - 2003 SP - 165 EP - 192 VL - 154 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm154-2-4/ DO - 10.4064/sm154-2-4 LA - en ID - 10_4064_sm154_2_4 ER -
B. Cascales; I. Namioka; J. Orihuela. The Lindelöf property in Banach spaces. Studia Mathematica, Tome 154 (2003) no. 2, pp. 165-192. doi: 10.4064/sm154-2-4
Cité par Sources :