An estimation for a family of oscillatory integrals
Studia Mathematica, Tome 154 (2003) no. 1, pp. 89-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a Calderón–Zygmund kernel and $P$ a real polynomial defined on ${\mathbb R}^n$ with $P(0)=0$. We prove that convolution with $K \mathop {\rm exp}\nolimits (i/P) $ is continuous on $L^2 ({\mathbb R}^n)$ with bounds depending only on $K$, $n$ and the degree of $P$, but not on the coefficients of $P$.
Keywords:
calder zygmund kernel real polynomial defined mathbb prove convolution mathop exp nolimits continuous mathbb bounds depending only degree coefficients
Affiliations des auteurs :
Magali Folch-Gabayet 1 ; James Wright 2
@article{10_4064_sm154_1_6,
author = {Magali Folch-Gabayet and James Wright},
title = {An estimation for a family of oscillatory integrals},
journal = {Studia Mathematica},
pages = {89--97},
publisher = {mathdoc},
volume = {154},
number = {1},
year = {2003},
doi = {10.4064/sm154-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-6/}
}
TY - JOUR AU - Magali Folch-Gabayet AU - James Wright TI - An estimation for a family of oscillatory integrals JO - Studia Mathematica PY - 2003 SP - 89 EP - 97 VL - 154 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-6/ DO - 10.4064/sm154-1-6 LA - en ID - 10_4064_sm154_1_6 ER -
Magali Folch-Gabayet; James Wright. An estimation for a family of oscillatory integrals. Studia Mathematica, Tome 154 (2003) no. 1, pp. 89-97. doi: 10.4064/sm154-1-6
Cité par Sources :