Littlewood–Paley–Stein functions on
 complete Riemannian manifolds for $1\leq p\leq 2$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 154 (2003) no. 1, pp. 37-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study the weak type $(1, 1)$ and the $L^p$-boundedness, $1 p\le 2$, of the so-called vertical (i.e. involving space derivatives) Littlewood–Paley–Stein functions ${\cal G}$ and ${\cal H}$ respectively associated with the Poisson semigroup and the heat semigroup on a complete Riemannian manifold $M$. Without any assumption on $M$, we observe that ${\cal G}$ and ${\cal H}$ are bounded in $L^p$, $1 
p\leq 2$. We also consider modified Littlewood–Paley–Stein functions that take into account the positivity of the bottom of the spectrum. Assuming that $M$ satisfies the doubling volume property and an optimal on-diagonal heat kernel estimate, we prove that ${\cal G}$ and ${\cal H}$ (as well as the corresponding horizontal functions, i.e. involving time derivatives) are of weak type $(1, 1)$. Finally, we apply our methods to divergence form operators on arbitrary domains of ${\mathbb R}^n$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study weak type p boundedness so called vertical involving space derivatives littlewood paley stein functions cal cal respectively associated poisson semigroup heat semigroup complete riemannian manifold without assumption observe cal cal bounded leq consider modified littlewood paley stein functions account positivity bottom spectrum assuming satisfies doubling volume property optimal on diagonal heat kernel estimate prove cal cal corresponding horizontal functions involving time derivatives weak type finally apply methods divergence form operators arbitrary domains mathbb
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Thierry Coulhon 1 ; Xuan Thinh Duong 2 ; Xiang Dong Li 3
@article{10_4064_sm154_1_4,
     author = {Thierry Coulhon and Xuan Thinh Duong and Xiang Dong Li},
     title = {Littlewood{\textendash}Paley{\textendash}Stein functions on
 complete {Riemannian} manifolds for $1\leq p\leq 2$},
     journal = {Studia Mathematica},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {154},
     number = {1},
     year = {2003},
     doi = {10.4064/sm154-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-4/}
}
                      
                      
                    TY - JOUR AU - Thierry Coulhon AU - Xuan Thinh Duong AU - Xiang Dong Li TI - Littlewood–Paley–Stein functions on complete Riemannian manifolds for $1\leq p\leq 2$ JO - Studia Mathematica PY - 2003 SP - 37 EP - 57 VL - 154 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-4/ DO - 10.4064/sm154-1-4 LA - en ID - 10_4064_sm154_1_4 ER -
%0 Journal Article %A Thierry Coulhon %A Xuan Thinh Duong %A Xiang Dong Li %T Littlewood–Paley–Stein functions on complete Riemannian manifolds for $1\leq p\leq 2$ %J Studia Mathematica %D 2003 %P 37-57 %V 154 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-4/ %R 10.4064/sm154-1-4 %G en %F 10_4064_sm154_1_4
Thierry Coulhon; Xuan Thinh Duong; Xiang Dong Li. Littlewood–Paley–Stein functions on complete Riemannian manifolds for $1\leq p\leq 2$. Studia Mathematica, Tome 154 (2003) no. 1, pp. 37-57. doi: 10.4064/sm154-1-4
Cité par Sources :
