$L^p({\Bbb R}^n)$ boundedness for the commutator of a
homogeneous singular integral operator
Studia Mathematica, Tome 154 (2003) no. 1, pp. 13-27
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The commutator of a singular integral operator with homogeneous kernel ${\mit \Omega }(x)/|x|^n$ is studied, where ${\mit \Omega }$ is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that ${\mit \Omega }\in L(\mathop {\rm log}\nolimits L)^{k+1}(S^{n-1})$ is a sufficient condition for the $k$th order commutator to be bounded on
$L^p({{\mathbb R}}^n)$ for all $1 p\infty $. The corresponding maximal operator is also considered.
Keywords:
commutator singular integral operator homogeneous kernel mit omega studied where mit omega homogeneous degree zero has mean value zero unit sphere proved mit omega mathop log nolimits n sufficient condition kth order commutator bounded mathbb infty corresponding maximal operator considered
Affiliations des auteurs :
Guoen Hu  1
@article{10_4064_sm154_1_2,
author = {Guoen Hu},
title = {$L^p({\Bbb R}^n)$ boundedness for the commutator of a
homogeneous singular integral operator},
journal = {Studia Mathematica},
pages = {13--27},
year = {2003},
volume = {154},
number = {1},
doi = {10.4064/sm154-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-2/}
}
TY - JOUR
AU - Guoen Hu
TI - $L^p({\Bbb R}^n)$ boundedness for the commutator of a
homogeneous singular integral operator
JO - Studia Mathematica
PY - 2003
SP - 13
EP - 27
VL - 154
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm154-1-2/
DO - 10.4064/sm154-1-2
LA - en
ID - 10_4064_sm154_1_2
ER -
Guoen Hu. $L^p({\Bbb R}^n)$ boundedness for the commutator of a
homogeneous singular integral operator. Studia Mathematica, Tome 154 (2003) no. 1, pp. 13-27. doi: 10.4064/sm154-1-2
Cité par Sources :