The strong spectral extension property
does not imply
the multiplicative Hahn–Banach property
Studia Mathematica, Tome 153 (2002) no. 3, pp. 297-301
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
An example is given of a semisimple commutative Banach algebra that has the strong spectral extension property but fails the multiplicative Hahn–Banach property. This answers a question posed by M. J. Meyer in [4].
Keywords:
example given semisimple commutative banach algebra has strong spectral extension property fails multiplicative hahn banach property answers question posed meyer
Affiliations des auteurs :
A. Sołtysiak  1
@article{10_4064_sm153_3_6,
author = {A. So{\l}tysiak},
title = {The strong spectral extension property
does not imply
the multiplicative {Hahn{\textendash}Banach} property},
journal = {Studia Mathematica},
pages = {297--301},
year = {2002},
volume = {153},
number = {3},
doi = {10.4064/sm153-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-3-6/}
}
TY - JOUR AU - A. Sołtysiak TI - The strong spectral extension property does not imply the multiplicative Hahn–Banach property JO - Studia Mathematica PY - 2002 SP - 297 EP - 301 VL - 153 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm153-3-6/ DO - 10.4064/sm153-3-6 LA - en ID - 10_4064_sm153_3_6 ER -
A. Sołtysiak. The strong spectral extension property does not imply the multiplicative Hahn–Banach property. Studia Mathematica, Tome 153 (2002) no. 3, pp. 297-301. doi: 10.4064/sm153-3-6
Cité par Sources :