On the directional entropy of ${\Bbb Z}^2$-actions
generated by cellular automata
Studia Mathematica, Tome 153 (2002) no. 3, pp. 285-295
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that for any cellular automaton (CA) ${{\mathbb Z}}^{2}$-action ${\mit \Phi }$ on the space of all doubly infinite sequences with values in a finite set $A$, determined by an automaton rule $F=F_{[l,r]}$, $l,r\in {{\mathbb Z}}$, $l\leq r$, and any ${\mit \Phi }$-invariant Borel probability measure, the directional entropy $h_{\vec {v}}({\mit \Phi }), \vec {v}=(x,y) \in {{\mathbb R}}^{2}$, is bounded above by ${\mathop {\rm max}}(|z_{l}|,|z_{r}|)\mathop {\rm log}\nolimits \#A$ if $z_{l}z_{r}\geq 0$ and by $|z_{r}-z_{l}|$ in the opposite case, where $z_{l}=x+ly, z_{r}=x+ry$. We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.
Keywords:
cellular automaton mathbb action mit phi space doubly infinite sequences values finite set determined automaton rule mathbb leq mit phi invariant borel probability measure directional entropy vec mit phi vec mathbb bounded above mathop max mathop log nolimits geq z opposite where class permutative ca actions bounds attained measure considered uniform bernoulli
Affiliations des auteurs :
M. Courbage 1 ; B. Kamiński 2
@article{10_4064_sm153_3_5,
author = {M. Courbage and B. Kami\'nski},
title = {On the directional entropy of ${\Bbb Z}^2$-actions
generated by cellular automata},
journal = {Studia Mathematica},
pages = {285--295},
publisher = {mathdoc},
volume = {153},
number = {3},
year = {2002},
doi = {10.4064/sm153-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-3-5/}
}
TY - JOUR
AU - M. Courbage
AU - B. Kamiński
TI - On the directional entropy of ${\Bbb Z}^2$-actions
generated by cellular automata
JO - Studia Mathematica
PY - 2002
SP - 285
EP - 295
VL - 153
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm153-3-5/
DO - 10.4064/sm153-3-5
LA - en
ID - 10_4064_sm153_3_5
ER -
%0 Journal Article
%A M. Courbage
%A B. Kamiński
%T On the directional entropy of ${\Bbb Z}^2$-actions
generated by cellular automata
%J Studia Mathematica
%D 2002
%P 285-295
%V 153
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm153-3-5/
%R 10.4064/sm153-3-5
%G en
%F 10_4064_sm153_3_5
M. Courbage; B. Kamiński. On the directional entropy of ${\Bbb Z}^2$-actions
generated by cellular automata. Studia Mathematica, Tome 153 (2002) no. 3, pp. 285-295. doi: 10.4064/sm153-3-5
Cité par Sources :