Algebras whose groups of units are Lie groups
Studia Mathematica, Tome 153 (2002) no. 2, pp. 147-177 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $A$ be a locally convex, unital topological algebra whose group of units $A^\times $ is open and such that inversion $\iota : A^\times \to A^\times $ is continuous. Then inversion is analytic, and thus $A^\times $ is an analytic Lie group. We show that if $A$ is sequentially complete (or, more generally, Mackey complete), then $A^\times $ has a locally diffeomorphic exponential function and multiplication is given locally by the Baker–Campbell–Hausdorff series. In contrast, for suitable non-Mackey complete $A$, the unit group $A^\times $ is an analytic Lie group without a globally defined exponential function. We also discuss generalizations in the setting of “convenient differential calculus”, and describe various examples.
DOI : 10.4064/sm153-2-4
Keywords: locally convex unital topological algebra whose group units times inversion iota times times continuous inversion analytic times analytic lie group sequentially complete generally mackey complete times has locally diffeomorphic exponential function multiplication given locally baker campbell hausdorff series contrast suitable non mackey complete unit group times analytic lie group without globally defined exponential function discuss generalizations setting convenient differential calculus describe various examples

Helge Glöckner 1

1 FB Mathematik TU Darmstadt Schlossgartenstr. 7 64289 Darmstadt, Germany
@article{10_4064_sm153_2_4,
     author = {Helge Gl\"ockner},
     title = {Algebras whose groups of units are {Lie} groups},
     journal = {Studia Mathematica},
     pages = {147--177},
     year = {2002},
     volume = {153},
     number = {2},
     doi = {10.4064/sm153-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-4/}
}
TY  - JOUR
AU  - Helge Glöckner
TI  - Algebras whose groups of units are Lie groups
JO  - Studia Mathematica
PY  - 2002
SP  - 147
EP  - 177
VL  - 153
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-4/
DO  - 10.4064/sm153-2-4
LA  - en
ID  - 10_4064_sm153_2_4
ER  - 
%0 Journal Article
%A Helge Glöckner
%T Algebras whose groups of units are Lie groups
%J Studia Mathematica
%D 2002
%P 147-177
%V 153
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-4/
%R 10.4064/sm153-2-4
%G en
%F 10_4064_sm153_2_4
Helge Glöckner. Algebras whose groups of units are Lie groups. Studia Mathematica, Tome 153 (2002) no. 2, pp. 147-177. doi: 10.4064/sm153-2-4

Cité par Sources :