Diameter-preserving maps on various classes of function spaces
Studia Mathematica, Tome 153 (2002) no. 2, pp. 127-145 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.
DOI : 10.4064/sm153-2-3
Keywords: under mild assumptions non linear diameter preserving bijections between vector valued function spaces characterized help well known theorem ulam mazur necessary sufficient condition existence diameter preserving bijection between function spaces complex scalar derived complete description maps given several important cases

Bruce A. Barnes 1 ; Ashoke K. Roy 2

1 Department of Mathematics University of Oregon Eugene, OR 97403, U.S.A.
2 Indian Statistical Institute–Calcutta Statistics and Mathematics Unit 203 B. T. Road Calcutta 700 035, India
@article{10_4064_sm153_2_3,
     author = {Bruce A. Barnes and Ashoke K. Roy},
     title = {Diameter-preserving maps on various classes
 of function spaces},
     journal = {Studia Mathematica},
     pages = {127--145},
     year = {2002},
     volume = {153},
     number = {2},
     doi = {10.4064/sm153-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-3/}
}
TY  - JOUR
AU  - Bruce A. Barnes
AU  - Ashoke K. Roy
TI  - Diameter-preserving maps on various classes
 of function spaces
JO  - Studia Mathematica
PY  - 2002
SP  - 127
EP  - 145
VL  - 153
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-3/
DO  - 10.4064/sm153-2-3
LA  - en
ID  - 10_4064_sm153_2_3
ER  - 
%0 Journal Article
%A Bruce A. Barnes
%A Ashoke K. Roy
%T Diameter-preserving maps on various classes
 of function spaces
%J Studia Mathematica
%D 2002
%P 127-145
%V 153
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-3/
%R 10.4064/sm153-2-3
%G en
%F 10_4064_sm153_2_3
Bruce A. Barnes; Ashoke K. Roy. Diameter-preserving maps on various classes
 of function spaces. Studia Mathematica, Tome 153 (2002) no. 2, pp. 127-145. doi: 10.4064/sm153-2-3

Cité par Sources :