Diameter-preserving maps on various classes
of function spaces
Studia Mathematica, Tome 153 (2002) no. 2, pp. 127-145
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.
Keywords:
under mild assumptions non linear diameter preserving bijections between vector valued function spaces characterized help well known theorem ulam mazur necessary sufficient condition existence diameter preserving bijection between function spaces complex scalar derived complete description maps given several important cases
Affiliations des auteurs :
Bruce A. Barnes 1 ; Ashoke K. Roy 2
@article{10_4064_sm153_2_3,
author = {Bruce A. Barnes and Ashoke K. Roy},
title = {Diameter-preserving maps on various classes
of function spaces},
journal = {Studia Mathematica},
pages = {127--145},
year = {2002},
volume = {153},
number = {2},
doi = {10.4064/sm153-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-3/}
}
TY - JOUR AU - Bruce A. Barnes AU - Ashoke K. Roy TI - Diameter-preserving maps on various classes of function spaces JO - Studia Mathematica PY - 2002 SP - 127 EP - 145 VL - 153 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm153-2-3/ DO - 10.4064/sm153-2-3 LA - en ID - 10_4064_sm153_2_3 ER -
Bruce A. Barnes; Ashoke K. Roy. Diameter-preserving maps on various classes of function spaces. Studia Mathematica, Tome 153 (2002) no. 2, pp. 127-145. doi: 10.4064/sm153-2-3
Cité par Sources :