On the range of the derivative of a real-valued function with bounded support
Studia Mathematica, Tome 153 (2002) no. 1, pp. 81-99

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the set $f'(X)=\{f'(x): x \in X\}$ when $f:X\rightarrow \mathbb R $ is a differentiable bump. We first prove that for any $C^2$-smooth bump $f: \mathbb R^2 \rightarrow \mathbb R $ the range of the derivative of $f$ must be the closure of its interior. Next we show that if $X$ is an infinite-dimensional separable Banach space with a $C^p$-smooth bump $b:X\rightarrow \mathbb R $ such that $\| b ^{(p)} \| _{\infty} $ is finite, then any connected open subset of $X^{\ast}$ containing $0$ is the range of the derivative of a $C^p$-smooth bump. We also study the finite-dimensional case which is quite different. Finally, we show that in infinite-dimensional separable smooth Banach spaces, every analytic subset of $X^{\ast}$ which satisfies a natural linkage condition is the range of the derivative of a $C^1$-smooth bump. We then find an analogue of this condition in the finite-dimensional case
DOI : 10.4064/sm153-1-6
Keywords: study set rightarrow mathbb differentiable bump first prove smooth bump mathbb rightarrow mathbb range derivative closure its interior infinite dimensional separable banach space p smooth bump rightarrow mathbb infty finite connected subset ast containing range derivative p smooth bump study finite dimensional which quite different finally infinite dimensional separable smooth banach spaces every analytic subset ast which satisfies natural linkage condition range derivative smooth bump analogue condition finite dimensional case

T. Gaspari 1

1 Mathématiques Pures de Bordeaux (MPB), UMR 5467 CNRS Université Bordeaux 1 351, cours de la Libération 33400 Talence, France
@article{10_4064_sm153_1_6,
     author = {T. Gaspari},
     title = {On the range of the derivative of a real-valued
 function with bounded support},
     journal = {Studia Mathematica},
     pages = {81--99},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {2002},
     doi = {10.4064/sm153-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-6/}
}
TY  - JOUR
AU  - T. Gaspari
TI  - On the range of the derivative of a real-valued
 function with bounded support
JO  - Studia Mathematica
PY  - 2002
SP  - 81
EP  - 99
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-6/
DO  - 10.4064/sm153-1-6
LA  - en
ID  - 10_4064_sm153_1_6
ER  - 
%0 Journal Article
%A T. Gaspari
%T On the range of the derivative of a real-valued
 function with bounded support
%J Studia Mathematica
%D 2002
%P 81-99
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-6/
%R 10.4064/sm153-1-6
%G en
%F 10_4064_sm153_1_6
T. Gaspari. On the range of the derivative of a real-valued
 function with bounded support. Studia Mathematica, Tome 153 (2002) no. 1, pp. 81-99. doi: 10.4064/sm153-1-6

Cité par Sources :