Multipliers with closed range on commutative
semisimple Banach algebras
Studia Mathematica, Tome 153 (2002) no. 1, pp. 59-80
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a commutative semisimple
Banach algebra, ${\mit\Delta} (A)$ its Gelfand spectrum, $T$
a multiplier on $A$ and $\widehat{T}$ its Gelfand
transform. We study the following problems. (a)
When is $\delta (T)=\inf \{| \widehat{T}(f)|:f\in {\mit\Delta} (A)$,
$\widehat{T}(f)\neq 0\}>0?$ (b) When is the range $T(A)$
of $T$ closed in $A$ and does it have a bounded approximate
identity? (c) How to characterize the idempotent multipliers in terms of
subsets of ${\mit\Delta} (A)?$
Keywords:
commutative semisimple banach algebra mit delta its gelfand spectrum multiplier widehat its gelfand transform study following problems delta inf widehat mit delta widehat neq range closed does have bounded approximate identity characterize idempotent multipliers terms subsets mit delta
Affiliations des auteurs :
A. Ülger 1
@article{10_4064_sm153_1_5,
author = {A. \"Ulger},
title = {Multipliers with closed range on commutative
semisimple {Banach} algebras},
journal = {Studia Mathematica},
pages = {59--80},
year = {2002},
volume = {153},
number = {1},
doi = {10.4064/sm153-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-5/}
}
A. Ülger. Multipliers with closed range on commutative semisimple Banach algebras. Studia Mathematica, Tome 153 (2002) no. 1, pp. 59-80. doi: 10.4064/sm153-1-5
Cité par Sources :