Linear combinations of partitions of unity with restricted supports
Studia Mathematica, Tome 153 (2002) no. 1, pp. 1-11

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a locally finite open covering $\cal C$ of a normal space $X$ and a Hausdorff topological vector space $E$, we characterize all continuous functions $f: X \rightarrow E$ which admit a representation $f = \sum_{C \in {\cal C}} a_C \varphi_C$ with $a_C \in E$ and a partition of unity $\{\varphi_C: C \in {\cal C} \}$ subordinate to ${\cal C}$.As an application, we determine the class of all functions $f \in C(|\boldsymbol{\mathcal P}|)$ on the underlying space $|\boldsymbol{\mathcal P}|$ of a Euclidean complex $\boldsymbol{\mathcal P}$ such that, for each polytope $P \in \boldsymbol{\mathcal P}$, the restriction $f|_P$ attains its extrema at vertices of $P$. Finally, a class of extremal functions on the metric space $([-1,1]^m,d_\infty)$ is characterized, which appears in approximation by so-called controllable partitions of unity.
DOI : 10.4064/sm153-1-1
Keywords: given locally finite covering cal normal space hausdorff topological vector space characterize continuous functions rightarrow which admit representation sum cal varphi partition unity varphi cal subordinate cal application determine class functions boldsymbol mathcal underlying space boldsymbol mathcal euclidean complex boldsymbol mathcal each polytope boldsymbol mathcal restriction attains its extrema vertices finally class extremal functions metric space infty characterized which appears approximation so called controllable partitions unity

Christian Richter 1

1 Equipe d'Analyse Université Paris VI Case 186 4, Place Jussieu 75252 Paris Cedex 05, France
@article{10_4064_sm153_1_1,
     author = {Christian Richter},
     title = {Linear combinations of partitions of unity
 with restricted supports},
     journal = {Studia Mathematica},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {2002},
     doi = {10.4064/sm153-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-1/}
}
TY  - JOUR
AU  - Christian Richter
TI  - Linear combinations of partitions of unity
 with restricted supports
JO  - Studia Mathematica
PY  - 2002
SP  - 1
EP  - 11
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-1/
DO  - 10.4064/sm153-1-1
LA  - en
ID  - 10_4064_sm153_1_1
ER  - 
%0 Journal Article
%A Christian Richter
%T Linear combinations of partitions of unity
 with restricted supports
%J Studia Mathematica
%D 2002
%P 1-11
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm153-1-1/
%R 10.4064/sm153-1-1
%G en
%F 10_4064_sm153_1_1
Christian Richter. Linear combinations of partitions of unity
 with restricted supports. Studia Mathematica, Tome 153 (2002) no. 1, pp. 1-11. doi: 10.4064/sm153-1-1

Cité par Sources :