The topological entropy versus level sets for interval maps
Studia Mathematica, Tome 152 (2002) no. 3, pp. 249-261

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We answer affirmatively Coven's question [PC]: Suppose $f\colon \, I\to I$ is a continuous function of the interval such that every point has at least two preimages. Is it true that the topological entropy of $f$ is greater than or equal to $\mathop {\rm log}\nolimits 2$?
DOI : 10.4064/sm152-3-4
Keywords: answer affirmatively covens question suppose colon continuous function interval every point has least preimages topological entropy greater equal mathop log nolimits

Jozef Bobok 1

1 KM FSv. ČVUT Thákurova 7 166 29 Praha 6, Czech Republic
@article{10_4064_sm152_3_4,
     author = {Jozef Bobok},
     title = {The topological entropy versus level sets for interval maps},
     journal = {Studia Mathematica},
     pages = {249--261},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2002},
     doi = {10.4064/sm152-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-4/}
}
TY  - JOUR
AU  - Jozef Bobok
TI  - The topological entropy versus level sets for interval maps
JO  - Studia Mathematica
PY  - 2002
SP  - 249
EP  - 261
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-4/
DO  - 10.4064/sm152-3-4
LA  - en
ID  - 10_4064_sm152_3_4
ER  - 
%0 Journal Article
%A Jozef Bobok
%T The topological entropy versus level sets for interval maps
%J Studia Mathematica
%D 2002
%P 249-261
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-4/
%R 10.4064/sm152-3-4
%G en
%F 10_4064_sm152_3_4
Jozef Bobok. The topological entropy versus level sets for interval maps. Studia Mathematica, Tome 152 (2002) no. 3, pp. 249-261. doi: 10.4064/sm152-3-4

Cité par Sources :