The topological entropy versus level sets for interval maps
Studia Mathematica, Tome 152 (2002) no. 3, pp. 249-261
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We answer affirmatively Coven's question [PC]: Suppose $f\colon \, I\to I$ is a continuous function of the interval such that every point has at least two preimages. Is it true that the topological entropy of $f$ is greater than or equal to $\mathop {\rm log}\nolimits 2$?
Keywords:
answer affirmatively covens question suppose colon continuous function interval every point has least preimages topological entropy greater equal mathop log nolimits
Affiliations des auteurs :
Jozef Bobok 1
@article{10_4064_sm152_3_4,
author = {Jozef Bobok},
title = {The topological entropy versus level sets for interval maps},
journal = {Studia Mathematica},
pages = {249--261},
publisher = {mathdoc},
volume = {152},
number = {3},
year = {2002},
doi = {10.4064/sm152-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-4/}
}
Jozef Bobok. The topological entropy versus level sets for interval maps. Studia Mathematica, Tome 152 (2002) no. 3, pp. 249-261. doi: 10.4064/sm152-3-4
Cité par Sources :