Majorization of sequences,
sharp vector Khinchin inequalities,
and bisubharmonic functions
Studia Mathematica, Tome 152 (2002) no. 3, pp. 231-248
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X = \sum _{i=1}^k a_i U_i$, $Y = \sum _{i=1}^k b_i U_i,$ where the $U_i$ are independent random vectors, each uniformly distributed on the unit sphere in ${{\mathbb R}}^n,$ and $a_i,b_i$ are real constants. We prove that if $\{ b_i^2\} $ is majorized by $\{ a_i^2\} $ in the sense of Hardy–Littlewood–Pólya, and if ${\mit \Phi }: {{\mathbb R}}^n \rightarrow {\mathbb R}$ is continuous and bisubharmonic, then $E{\mit \Phi }(X) \leq E{\mit \Phi }(Y)$. Consequences include most of the known sharp $L^2$-$L^p$ Khinchin inequalities for sums of the form $X.$ For radial ${\mit \Phi },$ bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts to the majorization inequality exist when the $U_i$ are uniformly distributed on the unit ball of ${{\mathbb R}}^n$ instead of on the unit sphere.
Keywords:
sum u sum u where independent random vectors each uniformly distributed unit sphere mathbb i real constants prove majorized sense hardy littlewood lya mit phi mathbb rightarrow mathbb continuous bisubharmonic mit phi leq mit phi consequences include known sharp l khinchin inequalities sums form radial mit phi bisubharmonicity necessary sufficient majorization inequality always counterparts majorization inequality exist uniformly distributed unit ball mathbb instead unit sphere
Affiliations des auteurs :
Albert Baernstein II 1 ; Robert C. Culverhouse 2
@article{10_4064_sm152_3_3,
author = {Albert Baernstein II and Robert C. Culverhouse},
title = {Majorization of sequences,
sharp vector {Khinchin} inequalities,
and bisubharmonic functions},
journal = {Studia Mathematica},
pages = {231--248},
publisher = {mathdoc},
volume = {152},
number = {3},
year = {2002},
doi = {10.4064/sm152-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/}
}
TY - JOUR AU - Albert Baernstein II AU - Robert C. Culverhouse TI - Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions JO - Studia Mathematica PY - 2002 SP - 231 EP - 248 VL - 152 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/ DO - 10.4064/sm152-3-3 LA - en ID - 10_4064_sm152_3_3 ER -
%0 Journal Article %A Albert Baernstein II %A Robert C. Culverhouse %T Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions %J Studia Mathematica %D 2002 %P 231-248 %V 152 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/ %R 10.4064/sm152-3-3 %G en %F 10_4064_sm152_3_3
Albert Baernstein II; Robert C. Culverhouse. Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions. Studia Mathematica, Tome 152 (2002) no. 3, pp. 231-248. doi: 10.4064/sm152-3-3
Cité par Sources :