1Mathematics Department Washington University St. Louis, MO 63130, U.S.A. 2Department of Psychiatry Washington University Medical School St. Louis, MO 63110, U.S.A.
Studia Mathematica, Tome 152 (2002) no. 3, pp. 231-248
Let $X = \sum _{i=1}^k a_i U_i$, $Y = \sum _{i=1}^k b_i U_i,$ where the $U_i$ are independent random vectors, each uniformly distributed on the unit sphere in ${{\mathbb R}}^n,$ and $a_i,b_i$ are real constants. We prove that if $\{ b_i^2\} $ is majorized by $\{ a_i^2\} $ in the sense of Hardy–Littlewood–Pólya, and if ${\mit \Phi }: {{\mathbb R}}^n \rightarrow {\mathbb R}$ is continuous and bisubharmonic, then $E{\mit \Phi }(X) \leq E{\mit \Phi }(Y)$. Consequences include most of the known sharp $L^2$-$L^p$ Khinchin inequalities for sums of the form $X.$ For radial ${\mit \Phi },$ bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts to the majorization inequality exist when the $U_i$ are uniformly distributed on the unit ball of ${{\mathbb R}}^n$ instead of on the unit sphere.
Keywords:
sum u sum u where independent random vectors each uniformly distributed unit sphere mathbb i real constants prove majorized sense hardy littlewood lya mit phi mathbb rightarrow mathbb continuous bisubharmonic mit phi leq mit phi consequences include known sharp l khinchin inequalities sums form radial mit phi bisubharmonicity necessary sufficient majorization inequality always counterparts majorization inequality exist uniformly distributed unit ball mathbb instead unit sphere
Affiliations des auteurs :
Albert Baernstein II 
1
;
Robert C. Culverhouse 
2
1
Mathematics Department Washington University St. Louis, MO 63130, U.S.A.
2
Department of Psychiatry Washington University Medical School St. Louis, MO 63110, U.S.A.
@article{10_4064_sm152_3_3,
author = {Albert Baernstein II and Robert C. Culverhouse},
title = {Majorization of sequences,
sharp vector {Khinchin} inequalities,
and bisubharmonic functions},
journal = {Studia Mathematica},
pages = {231--248},
year = {2002},
volume = {152},
number = {3},
doi = {10.4064/sm152-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/}
}
TY - JOUR
AU - Albert Baernstein II
AU - Robert C. Culverhouse
TI - Majorization of sequences,
sharp vector Khinchin inequalities,
and bisubharmonic functions
JO - Studia Mathematica
PY - 2002
SP - 231
EP - 248
VL - 152
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/
DO - 10.4064/sm152-3-3
LA - en
ID - 10_4064_sm152_3_3
ER -
%0 Journal Article
%A Albert Baernstein II
%A Robert C. Culverhouse
%T Majorization of sequences,
sharp vector Khinchin inequalities,
and bisubharmonic functions
%J Studia Mathematica
%D 2002
%P 231-248
%V 152
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/
%R 10.4064/sm152-3-3
%G en
%F 10_4064_sm152_3_3
Albert Baernstein II; Robert C. Culverhouse. Majorization of sequences,
sharp vector Khinchin inequalities,
and bisubharmonic functions. Studia Mathematica, Tome 152 (2002) no. 3, pp. 231-248. doi: 10.4064/sm152-3-3