Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions
Studia Mathematica, Tome 152 (2002) no. 3, pp. 231-248

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X = \sum _{i=1}^k a_i U_i$, $Y = \sum _{i=1}^k b_i U_i,$ where the $U_i$ are independent random vectors, each uniformly distributed on the unit sphere in ${{\mathbb R}}^n,$ and $a_i,b_i$ are real constants. We prove that if $\{ b_i^2\} $ is majorized by $\{ a_i^2\} $ in the sense of Hardy–Littlewood–Pólya, and if ${\mit \Phi }: {{\mathbb R}}^n \rightarrow {\mathbb R}$ is continuous and bisubharmonic, then $E{\mit \Phi }(X) \leq E{\mit \Phi }(Y)$. Consequences include most of the known sharp $L^2$-$L^p$ Khinchin inequalities for sums of the form $X.$ For radial ${\mit \Phi },$ bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts to the majorization inequality exist when the $U_i$ are uniformly distributed on the unit ball of ${{\mathbb R}}^n$ instead of on the unit sphere.
DOI : 10.4064/sm152-3-3
Keywords: sum u sum u where independent random vectors each uniformly distributed unit sphere mathbb i real constants prove majorized sense hardy littlewood lya mit phi mathbb rightarrow mathbb continuous bisubharmonic mit phi leq mit phi consequences include known sharp l khinchin inequalities sums form radial mit phi bisubharmonicity necessary sufficient majorization inequality always counterparts majorization inequality exist uniformly distributed unit ball mathbb instead unit sphere

Albert Baernstein II 1 ; Robert C. Culverhouse 2

1 Mathematics Department Washington University St. Louis, MO 63130, U.S.A.
2 Department of Psychiatry Washington University Medical School St. Louis, MO 63110, U.S.A.
@article{10_4064_sm152_3_3,
     author = {Albert Baernstein II and Robert C. Culverhouse},
     title = {Majorization of sequences,
 sharp vector {Khinchin} inequalities,
 and bisubharmonic functions},
     journal = {Studia Mathematica},
     pages = {231--248},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2002},
     doi = {10.4064/sm152-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/}
}
TY  - JOUR
AU  - Albert Baernstein II
AU  - Robert C. Culverhouse
TI  - Majorization of sequences,
 sharp vector Khinchin inequalities,
 and bisubharmonic functions
JO  - Studia Mathematica
PY  - 2002
SP  - 231
EP  - 248
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/
DO  - 10.4064/sm152-3-3
LA  - en
ID  - 10_4064_sm152_3_3
ER  - 
%0 Journal Article
%A Albert Baernstein II
%A Robert C. Culverhouse
%T Majorization of sequences,
 sharp vector Khinchin inequalities,
 and bisubharmonic functions
%J Studia Mathematica
%D 2002
%P 231-248
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-3-3/
%R 10.4064/sm152-3-3
%G en
%F 10_4064_sm152_3_3
Albert Baernstein II; Robert C. Culverhouse. Majorization of sequences,
 sharp vector Khinchin inequalities,
 and bisubharmonic functions. Studia Mathematica, Tome 152 (2002) no. 3, pp. 231-248. doi: 10.4064/sm152-3-3

Cité par Sources :