Proper holomorphic liftings and new formulas
for the Bergman and Szegő kernels
Studia Mathematica, Tome 152 (2002) no. 2, pp. 161-186
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a large class of convex circular domains in $M_{m_{1}, n_{1}}({\mathbb C})\times \dots\times M_{m_{d}, n_{d}}({\mathbb C})$ which contains the oval domains and minimal balls. We compute their Bergman and Szeg{ő} kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.
Keywords:
consider large class convex circular domains mathbb times dots times mathbb which contains oval domains minimal balls compute their bergman szeg kernels approach relies analysis proper holomorphic liftings domains suitable manifolds
Affiliations des auteurs :
E. H. Youssfi 1
@article{10_4064_sm152_2_5,
author = {E. H. Youssfi},
title = {Proper holomorphic liftings and new formulas
for the {Bergman} and {Szeg\H{o}} kernels},
journal = {Studia Mathematica},
pages = {161--186},
publisher = {mathdoc},
volume = {152},
number = {2},
year = {2002},
doi = {10.4064/sm152-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-5/}
}
TY - JOUR AU - E. H. Youssfi TI - Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels JO - Studia Mathematica PY - 2002 SP - 161 EP - 186 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-5/ DO - 10.4064/sm152-2-5 LA - en ID - 10_4064_sm152_2_5 ER -
E. H. Youssfi. Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels. Studia Mathematica, Tome 152 (2002) no. 2, pp. 161-186. doi: 10.4064/sm152-2-5
Cité par Sources :