Proper holomorphic liftings and new formulas
for the Bergman and Szegő kernels
Studia Mathematica, Tome 152 (2002) no. 2, pp. 161-186
We consider a large class of convex circular domains in $M_{m_{1}, n_{1}}({\mathbb C})\times \dots\times M_{m_{d}, n_{d}}({\mathbb C})$ which contains the oval domains and minimal balls. We compute their Bergman and Szeg{ő} kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.
Keywords:
consider large class convex circular domains mathbb times dots times mathbb which contains oval domains minimal balls compute their bergman szeg kernels approach relies analysis proper holomorphic liftings domains suitable manifolds
Affiliations des auteurs :
E. H. Youssfi  1
@article{10_4064_sm152_2_5,
author = {E. H. Youssfi},
title = {Proper holomorphic liftings and new formulas
for the {Bergman} and {Szeg\H{o}} kernels},
journal = {Studia Mathematica},
pages = {161--186},
year = {2002},
volume = {152},
number = {2},
doi = {10.4064/sm152-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-5/}
}
E. H. Youssfi. Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels. Studia Mathematica, Tome 152 (2002) no. 2, pp. 161-186. doi: 10.4064/sm152-2-5
Cité par Sources :