Regularized cosine existence
and uniqueness families for
second order abstract Cauchy problems
Studia Mathematica, Tome 152 (2002) no. 2, pp. 131-145
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\bf C}_i$ $(i=1,2)$ be two arbitrary bounded operators on a Banach space. We study $({\bf C}_1, {\bf C}_2)$-regularized cosine existence and uniqueness families and their relationship to second order abstract Cauchy problems. We also prove some of their basic properties. In addition, Hille–Yosida type sufficient conditions are given for the exponentially bounded case.
Keywords:
arbitrary bounded operators banach space study regularized cosine existence uniqueness families their relationship second order abstract cauchy problems prove their basic properties addition hille yosida type sufficient conditions given exponentially bounded
Affiliations des auteurs :
Jizhou Zhang 1
@article{10_4064_sm152_2_3,
author = {Jizhou Zhang},
title = {Regularized cosine existence
and uniqueness families for
second order abstract {Cauchy} problems},
journal = {Studia Mathematica},
pages = {131--145},
publisher = {mathdoc},
volume = {152},
number = {2},
year = {2002},
doi = {10.4064/sm152-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-3/}
}
TY - JOUR AU - Jizhou Zhang TI - Regularized cosine existence and uniqueness families for second order abstract Cauchy problems JO - Studia Mathematica PY - 2002 SP - 131 EP - 145 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-3/ DO - 10.4064/sm152-2-3 LA - en ID - 10_4064_sm152_2_3 ER -
%0 Journal Article %A Jizhou Zhang %T Regularized cosine existence and uniqueness families for second order abstract Cauchy problems %J Studia Mathematica %D 2002 %P 131-145 %V 152 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm152-2-3/ %R 10.4064/sm152-2-3 %G en %F 10_4064_sm152_2_3
Jizhou Zhang. Regularized cosine existence and uniqueness families for second order abstract Cauchy problems. Studia Mathematica, Tome 152 (2002) no. 2, pp. 131-145. doi: 10.4064/sm152-2-3
Cité par Sources :