Separation properties for self-conformal sets
Studia Mathematica, Tome 152 (2002) no. 1, pp. 33-44

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a one-to-one self-conformal contractive system $\{ w_{j} \}_{j=1}^{m}$ on ${\mathbb R}^{d}$ with attractor $K$ and conformality dimension $\alpha$, Peres et al. showed that the open set condition and strong open set condition are both equivalent to $0 {\cal H}^{\alpha}(K)\infty$. We give a simple proof of this result as well as discuss some further properties related to the separation condition.
DOI : 10.4064/sm152-1-3
Keywords: one to one self conformal contractive system mathbb attractor conformality dimension alpha peres showed set condition strong set condition equivalent cal alpha infty simple proof result discuss further properties related separation condition

Yuan-Ling Ye 1

1 Department of Mathematics The Chinese University of Hong Kong Shatin, Hong Kong and Department of Mathematics South China Normal University Guangzhou 510631, P.R. China
@article{10_4064_sm152_1_3,
     author = {Yuan-Ling Ye},
     title = {Separation properties for self-conformal sets},
     journal = {Studia Mathematica},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2002},
     doi = {10.4064/sm152-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-3/}
}
TY  - JOUR
AU  - Yuan-Ling Ye
TI  - Separation properties for self-conformal sets
JO  - Studia Mathematica
PY  - 2002
SP  - 33
EP  - 44
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-3/
DO  - 10.4064/sm152-1-3
LA  - en
ID  - 10_4064_sm152_1_3
ER  - 
%0 Journal Article
%A Yuan-Ling Ye
%T Separation properties for self-conformal sets
%J Studia Mathematica
%D 2002
%P 33-44
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-3/
%R 10.4064/sm152-1-3
%G en
%F 10_4064_sm152_1_3
Yuan-Ling Ye. Separation properties for self-conformal sets. Studia Mathematica, Tome 152 (2002) no. 1, pp. 33-44. doi: 10.4064/sm152-1-3

Cité par Sources :