Bounded and unbounded operators between Köthe spaces
Studia Mathematica, Tome 152 (2002) no. 1, pp. 11-31

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study in terms of corresponding Köthe matrices when every continuous linear operator between two Köthe spaces is bounded, the consequences of the existence of unbounded continuous linear operators, and related topics.
DOI : 10.4064/sm152-1-2
Keywords: study terms corresponding matrices every continuous linear operator between spaces bounded consequences existence unbounded continuous linear operators related topics

P. B. Djakov 1 ; M. S. Ramanujan 2

1 Department of Mathematics Sofia University 1164 Sofia, Bulgaria
2 Department of Mathematics University of Michigan Ann Arbor, MI 48109-1109, U.S.A.
@article{10_4064_sm152_1_2,
     author = {P. B. Djakov and M. S. Ramanujan},
     title = {Bounded and unbounded operators between {K\"othe} spaces},
     journal = {Studia Mathematica},
     pages = {11--31},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2002},
     doi = {10.4064/sm152-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-2/}
}
TY  - JOUR
AU  - P. B. Djakov
AU  - M. S. Ramanujan
TI  - Bounded and unbounded operators between Köthe spaces
JO  - Studia Mathematica
PY  - 2002
SP  - 11
EP  - 31
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-2/
DO  - 10.4064/sm152-1-2
LA  - en
ID  - 10_4064_sm152_1_2
ER  - 
%0 Journal Article
%A P. B. Djakov
%A M. S. Ramanujan
%T Bounded and unbounded operators between Köthe spaces
%J Studia Mathematica
%D 2002
%P 11-31
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-2/
%R 10.4064/sm152-1-2
%G en
%F 10_4064_sm152_1_2
P. B. Djakov; M. S. Ramanujan. Bounded and unbounded operators between Köthe spaces. Studia Mathematica, Tome 152 (2002) no. 1, pp. 11-31. doi: 10.4064/sm152-1-2

Cité par Sources :