Some locally mean ergodic theorems
Studia Mathematica, Tome 152 (2002) no. 1, pp. 1-9

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The notion of local mean ergodicity is introduced. Some general locally mean ergodic theorems for linear and affine operators are presented. Locally mean ergodic theorems for affine operators whose linear parts are compact or similar to subnormal operators on a Hilbert space are given.
DOI : 10.4064/sm152-1-1
Keywords: notion local mean ergodicity introduced general locally mean ergodic theorems linear affine operators presented locally mean ergodic theorems affine operators whose linear parts compact similar subnormal operators hilbert space given

Ping Kwan Tam 1 ; Kok-Keong Tan 2

1 Department of Mathematics Chinese University of Hong Kong Shatin, New Territories, Hong Kong
2 Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada, B3H 3J5
@article{10_4064_sm152_1_1,
     author = {Ping Kwan Tam and Kok-Keong Tan},
     title = {Some locally mean ergodic theorems},
     journal = {Studia Mathematica},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2002},
     doi = {10.4064/sm152-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-1/}
}
TY  - JOUR
AU  - Ping Kwan Tam
AU  - Kok-Keong Tan
TI  - Some locally mean ergodic theorems
JO  - Studia Mathematica
PY  - 2002
SP  - 1
EP  - 9
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-1/
DO  - 10.4064/sm152-1-1
LA  - en
ID  - 10_4064_sm152_1_1
ER  - 
%0 Journal Article
%A Ping Kwan Tam
%A Kok-Keong Tan
%T Some locally mean ergodic theorems
%J Studia Mathematica
%D 2002
%P 1-9
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm152-1-1/
%R 10.4064/sm152-1-1
%G en
%F 10_4064_sm152_1_1
Ping Kwan Tam; Kok-Keong Tan. Some locally mean ergodic theorems. Studia Mathematica, Tome 152 (2002) no. 1, pp. 1-9. doi: 10.4064/sm152-1-1

Cité par Sources :