Inductive extreme non-Arens regularity of the Fourier algebra $A(G)$
Studia Mathematica, Tome 151 (2002) no. 3, pp. 247-264

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a non-discrete locally compact group, $A(G)$ the Fourier algebra of $G$, ${\rm VN}(G)$ the von Neumann algebra generated by the left regular representation of $G$ which is identified with $A(G)^*$, and ${\rm WAP}(\widehat {G})$ the space of all weakly almost periodic functionals on $A(G)$. We show that there exists a directed family ${\cal H}$ of open subgroups of $G$ such that: (1) for each $H \in {\cal H}$, $A(H)$ is extremely non-Arens regular; (2) ${\rm VN}(G) = \bigcup _{H \in {\cal H}} {\rm VN}(H)$ and ${\rm VN}(G)/{\rm WAP}(\widehat {G}) = \bigcup _{H \in {\cal H}} [{\rm VN}(H)/{\rm WAP}(\widehat H)]$; (3) $A(G) = \bigcup _{H \in {\cal H}} A(H)$ and it is a WAP-strong inductive union in the sense that the unions in (2) are strongly compatible with it. Furthermore, we prove that the family $\{ A(H):H \in {\cal H}\} $ of Fourier algebras has a kind of inductively compatible extreme non-Arens regularity.
DOI : 10.4064/sm151-3-4
Keywords: non discrete locally compact group fourier algebra von neumann algebra generated regular representation which identified * wap widehat space weakly almost periodic functionals there exists directed family cal subgroups each cal extremely non arens regular bigcup cal wap widehat bigcup cal wap widehat bigcup cal wap strong inductive union sense unions strongly compatible furthermore prove family cal fourier algebras has kind inductively compatible extreme non arens regularity

Zhiguo Hu 1

1 Department of Mathematics and Statistics University of Windsor Windsor, Ontario, Canada N9B 3P4
@article{10_4064_sm151_3_4,
     author = {Zhiguo Hu},
     title = {Inductive extreme {non-Arens} regularity
  of the {Fourier} algebra $A(G)$},
     journal = {Studia Mathematica},
     pages = {247--264},
     publisher = {mathdoc},
     volume = {151},
     number = {3},
     year = {2002},
     doi = {10.4064/sm151-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-3-4/}
}
TY  - JOUR
AU  - Zhiguo Hu
TI  - Inductive extreme non-Arens regularity
  of the Fourier algebra $A(G)$
JO  - Studia Mathematica
PY  - 2002
SP  - 247
EP  - 264
VL  - 151
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm151-3-4/
DO  - 10.4064/sm151-3-4
LA  - en
ID  - 10_4064_sm151_3_4
ER  - 
%0 Journal Article
%A Zhiguo Hu
%T Inductive extreme non-Arens regularity
  of the Fourier algebra $A(G)$
%J Studia Mathematica
%D 2002
%P 247-264
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm151-3-4/
%R 10.4064/sm151-3-4
%G en
%F 10_4064_sm151_3_4
Zhiguo Hu. Inductive extreme non-Arens regularity
  of the Fourier algebra $A(G)$. Studia Mathematica, Tome 151 (2002) no. 3, pp. 247-264. doi: 10.4064/sm151-3-4

Cité par Sources :