The existence of solutions for elliptic systems with nonuniform growth
Studia Mathematica, Tome 151 (2002) no. 3, pp. 227-246

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the Dirichlet problems for elliptic partial differential systems with nonuniform growth. By means of the Musielak–Orlicz space theory, we obtain the existence of weak solutions, which generalizes the result of Acerbi and Fusco [1].
DOI : 10.4064/sm151-3-3
Keywords: study dirichlet problems elliptic partial differential systems nonuniform growth means musielak orlicz space theory obtain existence weak solutions which generalizes result acerbi fusco

Y. Q. Fu 1

1 Department of Mathematics Harbin Institute of Technology Harbin 150001, P.R. China
@article{10_4064_sm151_3_3,
     author = {Y. Q. Fu},
     title = {The existence of solutions for
 elliptic systems with nonuniform growth},
     journal = {Studia Mathematica},
     pages = {227--246},
     publisher = {mathdoc},
     volume = {151},
     number = {3},
     year = {2002},
     doi = {10.4064/sm151-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-3-3/}
}
TY  - JOUR
AU  - Y. Q. Fu
TI  - The existence of solutions for
 elliptic systems with nonuniform growth
JO  - Studia Mathematica
PY  - 2002
SP  - 227
EP  - 246
VL  - 151
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm151-3-3/
DO  - 10.4064/sm151-3-3
LA  - en
ID  - 10_4064_sm151_3_3
ER  - 
%0 Journal Article
%A Y. Q. Fu
%T The existence of solutions for
 elliptic systems with nonuniform growth
%J Studia Mathematica
%D 2002
%P 227-246
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm151-3-3/
%R 10.4064/sm151-3-3
%G en
%F 10_4064_sm151_3_3
Y. Q. Fu. The existence of solutions for
 elliptic systems with nonuniform growth. Studia Mathematica, Tome 151 (2002) no. 3, pp. 227-246. doi: 10.4064/sm151-3-3

Cité par Sources :