$n$-supercyclic operators
Studia Mathematica, Tome 151 (2002) no. 2, pp. 141-159

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there are linear operators on Hilbert space that have $n$-dimensional subspaces with dense orbit, but no $(n-1)$-dimensional subspaces with dense orbit. This leads to a new class of operators, called the $n$-supercyclic operators. We show that many cohyponormal operators are $n$-supercyclic. Furthermore, we prove that for an $n$-supercyclic operator, there are $n$ circles centered at the origin such that every component of the spectrum must intersect one of these circles.
DOI : 10.4064/sm151-2-3
Keywords: there linear operators hilbert space have n dimensional subspaces dense orbit n dimensional subspaces dense orbit leads class operators called n supercyclic operators many cohyponormal operators n supercyclic furthermore prove n supercyclic operator there circles centered origin every component spectrum intersect these circles

Nathan S. Feldman 1

1 Department of Mathematics Washington and Lee University Lexington, VA 24450, U.S.A.
@article{10_4064_sm151_2_3,
     author = {Nathan S. Feldman},
     title = {$n$-supercyclic operators},
     journal = {Studia Mathematica},
     pages = {141--159},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {2002},
     doi = {10.4064/sm151-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-3/}
}
TY  - JOUR
AU  - Nathan S. Feldman
TI  - $n$-supercyclic operators
JO  - Studia Mathematica
PY  - 2002
SP  - 141
EP  - 159
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-3/
DO  - 10.4064/sm151-2-3
LA  - en
ID  - 10_4064_sm151_2_3
ER  - 
%0 Journal Article
%A Nathan S. Feldman
%T $n$-supercyclic operators
%J Studia Mathematica
%D 2002
%P 141-159
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm151-2-3/
%R 10.4064/sm151-2-3
%G en
%F 10_4064_sm151_2_3
Nathan S. Feldman. $n$-supercyclic operators. Studia Mathematica, Tome 151 (2002) no. 2, pp. 141-159. doi: 10.4064/sm151-2-3

Cité par Sources :