Regularity of stopping times of
diffusion processes in Besov spaces
Studia Mathematica, Tome 151 (2002) no. 1, pp. 23-29
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the exit times of diffusion processes from a bounded open set ${\mit \Omega } $ almost surely belong to the Besov space $B^{\alpha }_{p,q}({\mit \Omega } )$ provided that $p\alpha \! \! 1$ and $1 \leq q\! \infty $.
Keywords:
prove exit times diffusion processes bounded set mit omega almost surely belong besov space alpha mit omega provided alpha leq infty
Affiliations des auteurs :
Xicheng Zhang 1
@article{10_4064_sm151_1_2,
author = {Xicheng Zhang},
title = {Regularity of stopping times of
diffusion processes in {Besov} spaces},
journal = {Studia Mathematica},
pages = {23--29},
publisher = {mathdoc},
volume = {151},
number = {1},
year = {2002},
doi = {10.4064/sm151-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm151-1-2/}
}
Xicheng Zhang. Regularity of stopping times of diffusion processes in Besov spaces. Studia Mathematica, Tome 151 (2002) no. 1, pp. 23-29. doi: 10.4064/sm151-1-2
Cité par Sources :