The spectrally bounded linear maps on operator algebras
Studia Mathematica, Tome 150 (2002) no. 3, pp. 261-271
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that every spectrally bounded linear map ${\mit \Phi }$ from a Banach algebra onto a standard operator algebra acting on a complex Banach space is square-zero preserving. This result is used to show that if ${\mit \Phi }_{2}$ is spectrally bounded, then ${\mit \Phi }$ is a homomorphism multiplied by a nonzero complex number. As another application to the Hilbert space case, a classification theorem is obtained which states that every spectrally bounded linear bijection ${\mit \Phi }$ from ${\cal B}(H)$ onto ${\cal B}(K)$, where $H$ and $K$ are infinite-dimensional complex Hilbert spaces, is either an isomorphism or an anti-isomorphism multiplied by a nonzero complex number. If ${\mit \Phi }$ is not injective, then ${\mit \Phi }$ vanishes at all compact operators.
Keywords:
every spectrally bounded linear map mit phi banach algebra standard operator algebra acting complex banach space square zero preserving result mit phi spectrally bounded mit phi homomorphism multiplied nonzero complex number another application hilbert space classification theorem obtained which states every spectrally bounded linear bijection mit phi cal cal where infinite dimensional complex hilbert spaces either isomorphism anti isomorphism multiplied nonzero complex number mit phi injective mit phi vanishes compact operators
Affiliations des auteurs :
Jianlian Cui 1 ; Jinchuan Hou 2
@article{10_4064_sm150_3_4,
author = {Jianlian Cui and Jinchuan Hou},
title = {The spectrally bounded linear maps on operator algebras},
journal = {Studia Mathematica},
pages = {261--271},
publisher = {mathdoc},
volume = {150},
number = {3},
year = {2002},
doi = {10.4064/sm150-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-3-4/}
}
TY - JOUR AU - Jianlian Cui AU - Jinchuan Hou TI - The spectrally bounded linear maps on operator algebras JO - Studia Mathematica PY - 2002 SP - 261 EP - 271 VL - 150 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm150-3-4/ DO - 10.4064/sm150-3-4 LA - en ID - 10_4064_sm150_3_4 ER -
Jianlian Cui; Jinchuan Hou. The spectrally bounded linear maps on operator algebras. Studia Mathematica, Tome 150 (2002) no. 3, pp. 261-271. doi: 10.4064/sm150-3-4
Cité par Sources :