Permanence of moment estimates for
$p$-products of convex bodies
Studia Mathematica, Tome 150 (2002) no. 3, pp. 243-260
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that two inequalities concerning second and fourth moments of isotropic normalized convex bodies in ${\mathbb R}^n$ are permanent under forming $p$-products. These inequalities are connected with a concentration of mass property as well as with a central limit property. An essential tool are certain monotonicity properties of the ${\mit \Gamma }$-function.
Keywords:
shown inequalities concerning second fourth moments isotropic normalized convex bodies mathbb permanent under forming p products these inequalities connected concentration mass property central limit property essential tool certain monotonicity properties mit gamma function
Affiliations des auteurs :
Ulrich Brehm 1 ; Hendrik Vogt 1 ; Jürgen Voigt 1
@article{10_4064_sm150_3_3,
author = {Ulrich Brehm and Hendrik Vogt and J\"urgen Voigt},
title = {Permanence of moment estimates for
$p$-products of convex bodies},
journal = {Studia Mathematica},
pages = {243--260},
publisher = {mathdoc},
volume = {150},
number = {3},
year = {2002},
doi = {10.4064/sm150-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-3-3/}
}
TY - JOUR AU - Ulrich Brehm AU - Hendrik Vogt AU - Jürgen Voigt TI - Permanence of moment estimates for $p$-products of convex bodies JO - Studia Mathematica PY - 2002 SP - 243 EP - 260 VL - 150 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm150-3-3/ DO - 10.4064/sm150-3-3 LA - en ID - 10_4064_sm150_3_3 ER -
%0 Journal Article %A Ulrich Brehm %A Hendrik Vogt %A Jürgen Voigt %T Permanence of moment estimates for $p$-products of convex bodies %J Studia Mathematica %D 2002 %P 243-260 %V 150 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm150-3-3/ %R 10.4064/sm150-3-3 %G en %F 10_4064_sm150_3_3
Ulrich Brehm; Hendrik Vogt; Jürgen Voigt. Permanence of moment estimates for $p$-products of convex bodies. Studia Mathematica, Tome 150 (2002) no. 3, pp. 243-260. doi: 10.4064/sm150-3-3
Cité par Sources :